

 eProsima DDS Router Documentation

[image: eProsima]
 [http://www.eprosima.com/]eProsima DDS Router is an end-user software application that enables the connection of distributed DDS networks.
That is, DDS entities such as publishers and subscribers deployed in one geographic location and using a dedicated
local network will be able to communicate with other DDS entities deployed in different geographic areas on their own
dedicated local networks as if they were all on the same network through the use of eProsima DDS Router.
This is achieved by deploying a DDS Router on an edge device of each local network so that the
DDS Router routes DDS traffic from one network to the other through WAN communication.

Furthermore, DDS Router is a software designed for various forms of distributed networks,
such as mesh networks in which nodes are deployed in different private local networks that are auto-discovered
without any centralized network node, or cloud-based networks where there is a data processing cloud and
multiple geographically distributed edge devices.

Overview

Following are some of the key features of eProsima DDS Router:

	WAN communication over TCP: it supports WAN over TCP communication to establish DDS communications over the
Internet.

	Distributed nature: the user may deploy intermediate DDS Router nodes to discover new entities that enter and
leave the network dynamically.

	Efficient data routing: DDS Router avoids data introspection achieving a zero-copy system in data
forwarding.

	Easy deployment: it is based on an easily configurable modular system for users with no knowledge of computer
networks.

	Topic allowlisting: it is possible to configure a DDS Router to forward just the user data belonging to a
topic specified by the user.

	Dynamic topic discovery: the user does not need to fully specify over which topics to communicate (i.e. provide
concrete topic names and types). The discovery of topics matching the allowlisting rules automatically triggers the
creation of all entities required for communication.

[image: _images/ddsrouter_cloud.png]

Contacts and Commercial support

Find more about us at eProsima’s webpage [https://eprosima.com/].

Support available at:

	Email: support@eprosima.com

	Phone: +34 91 804 34 48

Contributing to the documentation

DDS Router Documentation is an open source project, and as such all contributions, both in the form of
feedback and content generation, are most welcomed.
To make such contributions, please refer to the
Contribution Guidelines [https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md] hosted in our GitHub
repository.

Structure of the documentation

This documentation is organized into the sections below.

	Installation Manual

	Getting Started

	User Manual

	Examples

	Use cases

	Developer Manual

	Release Notes

 eProsima DDS Router Documentation

[image: eProsima]
 [http://www.eprosima.com/]eProsima DDS Router is an end-user software application that enables the connection of distributed DDS networks.
That is, DDS entities such as publishers and subscribers deployed in one geographic location and using a dedicated
local network will be able to communicate with other DDS entities deployed in different geographic areas on their own
dedicated local networks as if they were all on the same network through the use of eProsima DDS Router.
This is achieved by deploying a DDS Router on an edge device of each local network so that the
DDS Router routes DDS traffic from one network to the other through WAN communication.

Furthermore, DDS Router is a software designed for various forms of distributed networks,
such as mesh networks in which nodes are deployed in different private local networks that are auto-discovered
without any centralized network node, or cloud-based networks where there is a data processing cloud and
multiple geographically distributed edge devices.

Overview

Following are some of the key features of eProsima DDS Router:

	WAN communication over TCP: it supports WAN over TCP communication to establish DDS communications over the
Internet.

	Distributed nature: the user may deploy intermediate DDS Router nodes to discover new entities that enter and
leave the network dynamically.

	Efficient data routing: DDS Router avoids data introspection achieving a zero-copy system in data
forwarding.

	Easy deployment: it is based on an easily configurable modular system for users with no knowledge of computer
networks.

	Topic allowlisting: it is possible to configure a DDS Router to forward just the user data belonging to a
topic specified by the user.

	Dynamic topic discovery: the user does not need to fully specify over which topics to communicate (i.e. provide
concrete topic names and types). The discovery of topics matching the allowlisting rules automatically triggers the
creation of all entities required for communication.

[image: ../../_images/ddsrouter_cloud.png]

Contacts and Commercial support

Find more about us at eProsima’s webpage [https://eprosima.com/].

Support available at:

	Email: support@eprosima.com

	Phone: +34 91 804 34 48

Contributing to the documentation

DDS Router Documentation is an open source project, and as such all contributions, both in the form of
feedback and content generation, are most welcomed.
To make such contributions, please refer to the
Contribution Guidelines [https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md] hosted in our GitHub
repository.

Structure of the documentation

This documentation is organized into the sections below.

	Installation Manual

	Getting Started

	User Manual

	Examples

	Use cases

	Developer Manual

	Release Notes

1. DDS Router on Windows

Warning

The current version of DDS Router does not have installers for Windows platforms.
Please refer to the Windows installation from sources section to learn how to build DDS Router
on Windows from sources.

2. DDS Router on Linux

Warning

The current version of DDS Router does not have installers for Linux platforms.
Please refer to the Linux installation from sources section to learn how to build DDS Router
on Linux from sources.

3. Docker image

eProsima distributes a Docker image of DDS Router with Ubuntu 20.04 as base image.
This image launches an instance of DDS Router that is configured using a YAML configuration file provided by the user
and shared with the Docker container.
The steps to run DDS Router in a Docker container are explained below.

	Download the compressed Docker image in .tar format from the
eProsima Downloads website [https://www.eprosima.com/index.php/downloads-all].
It is strongly recommended to download the image corresponding to the latest version of DDS Router.

	Extract the image by executing the following command:

load ubuntu-ddsrouter:<version>.tar

where version is the downloaded version of DDS Router.

	Build a DDS Router configuration YAML file on the local machine.
This will be the DDS Router configuration file that runs inside the Docker container.
To continue this installation manual, let’s use one of the configuration files provided in the
Examples section.
Open your preferred text editor and copy a full example from the Examples section
into the /<dds_router_ws>/DDS_ROUTER_CONFIGURATION.yaml file, where dds_router_ws is the path of the
configuration file.
To make this accessible from the Docker container we will create a shared volume containing just
this file. This is explained in next point.

	Run the Docker container executing the following command:

docker run -it \
 --net=host \
 -v /<dds_router_ws>/DDS_ROUTER_CONFIGURATION.yaml:/root/DDS_ROUTER_CONFIGURATION.yaml \
 ubuntu-ddsrouter:v0.3.0

It is important to mention that both the path to the configuration file hosted in the local machine and the one
created in the Docker container must be absolute paths in order to share just one single file as a shared volume.

After executing the previous command you should be able to see the initialization traces from the DDS Router
running in the Docker container.
If you want to terminate the application gracefully, just press Ctrl+C to stop the execution of DDS Router.

1. Project Overview

DDS Router is a cross-platform non-graphical application developed by eProsima and powered by Fast DDS
that allows to create a communication bridge that connects two DDS networks that otherwise would be isolated.
The main use case of the DDS Router is to communicate two DDS networks that are physically or virtually separated
and belong to different LANs, allowing the entities of each network to publish and subscribe to local
and remote topics indistinctly.

The DDS Router is an application that internally run Participants, which are an abstraction of
DDS DomainParticipants.
Each one of these Participants is an communication interface, a “door” to a specific DDS network configuration.
These Participants allow the application to connect to different DDS networks at the same time.
Every time one of these Participants receives a message from the DDS network to which they are connected,
they will forward the data and the source of this message through the other Participants.
The DDS Router configuration and the topics in which it operates depends on the initial
DDS Router configuration.

The following schema represents a DDS Router local use case.
This scenario presents different DDS networks that are isolated one to each other due to the Transport Protocol
(UDP, TCP, etc.), the Discovery Protocol (Simple, Discovery Server, etc.) or the DDS Domain Id used
by each DDS entity.
Configuring the DDS Router to have 4 different Participants, each of them configured for one isolated DDS network,
will create internally 4 Participants.
All the data that arrives to one of the Participants will be forwarded through the others, allowing all the machines
to connect to each other independently of their different configurations.
This data transmission will be accomplished without copying the data, as all participants will share the pointer
to the allocated data, successfully achieving a zero-copy communication mechanism.

[image: ../../_images/ddsrouter_overview.png]

1.1. WAN Communication

To achieve a WAN communication of two networks that work in different LANs requires a running
DDS Router application on each LAN.
The DDS Router deployed will communicate to each other using DDS over WAN,
and will route every message received in LAN to the remote DDS Router.
Once the remote Router receives data, it will transmit it to the local networks to which it is connected.
This way, both DDS networks will behave as if they would belong to the same LAN.

Another important feature is that WAN communications is not limited to a single pair of DDS Router.
The WAN communication is performed using the
eProsima Discovery Server discovery mechanism [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/discovery/discovery_server.html#discovery-server]
(dynamic discovery over non-multicast networks).
Thus, any DDS Router connected to the same Discovery Servers will works as a standard DDS node, publishing
and subscribing in the shared DDS topics.
This allows to create a non limited and highly scalable decentralized and distributed DDS network.

[image: ../../_images/ddsrouter_overview_wan.png]

1.2. Usage Description

The DDS Router is a terminal (non-graphical) application that creates the DDS bridge as long as it is running.
The configuration in YAML format is very intuitive and human-readable.
The whole application has been thought to be user-friendly, following a user-oriented design.

	RUN: In order to run a DDS Router application, just a YAML configuration file is required with the specific
configurations (see section to check how to configure a DDS Router)
(see section section
to check the application supported arguments).

	INTERACT: Once the DDS Router application is running, the topics involved in this communication could be
changed in runtime by just changing the YAML configuration file
(see section Reload Topics
for more details about re-configuring a running DDS Router)..

	STOP: To stop the DDS Router just send a ^C signal to the process, and it will gracefully close the whole
application
(see section Close Application for more details on how to close the application).

1.3. Common Use Cases

The different cases where the DDS Router could be applied are very varied, and would increase as new Participant Kinds
will be added in future releases.
These are most common use cases so far:

	Use Case

	Example

	Communicating two different DDS Domain Ids

	Change Domain Example

	Communicating ROS 2 Discovery Server executions

	ROS2 Discovery Server Example

	WAN Communication

	WAN Example

2. Example of usage

This example will serve as a hands-on tutorial, aimed at introducing some of the key concepts and features that
eProsima DDS Router has to offer.

Two disjoint DDS networks will be bridged by means of a pair of routers, allowing for the connection between endpoints
hosted at each of the networks. In particular, two ShapesDemo [https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo]
instances will establish communication after proper configuration and deployment of the two aforementioned routers.

[image: ../../_images/shapesdemo_general.png]

Note

This example applies to both LAN and WAN scenarios. For the WAN case, make sure that public IP addresses are used
instead of private ones, and that the provided ports are reachable by properly configuring port forwarding in your
Internet router devices.

2.1. Launching ShapesDemo

ShapesDemo [https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo] is an application that publishes
and subscribes to shapes of different colors and sizes moving on a board. This is nothing more than a graphical tool to
test the correctness of a specific DDS protocol implementation, as well as to prove interoperability with other
implementations.

Let us launch a ShapesDemo instance in one of the DDS networks, and start publishing in topics Square, Circle
and Triangle with default settings.

[image: ../../_images/shapesdemo_publisher.png]

Now, run another instance in the other network and subscribe to the same topics chosen in the publisher side (use
default settings).

[image: ../../_images/shapesdemo_subscriber.png]

Note

If you are trying this example in the LAN scenario, make sure a different DDS domain id is used in one of the
ShapesDemo instances in order to avoid direct communication between them.

2.2. Router configuration

A configuration file is all that is required in order to run a DDS Router instance. In a nutshell, each router will
forward messages if their associated topics match the filters contained in its allowlist. A blocklist may also
be specified, on its own or in addition to an allowlist, but we will not be covering this here.

Let us first add only the Square topic:

allowlist:
 - name: Square

Apart from selecting on which topics we wish to send/receive data, we must configure as well the participants that will
ultimately perform communication. Each router instance will contain a simple
and a WAN participants. In brief, the simple participants will be in charge of
locally communicating with the corresponding ShapesDemo application, while the WAN participants will be the ones
bridging the connection between the two DDS networks.

[image: ../../_images/shapesdemo_detailed.png]

The only configuration required for simple participants is the DDS domain identifier.

 - name: SimpleParticipant
 kind: local
 domain: 0

If launching the two routers in the same LAN, set a different domain id in one of the two configuration files (same
as the one previously set for ShapesDemo).

The configuration of WAN participants is more complex, and we will not be covering it here in detail. In short, in this
example both WAN participants will communicate through UDP, with one being the client and the other one having the
server role. Both participants are required to have a listening address (for the UDP case) where they will expect to
receive traffic, and a connection address in the case of the client, which points at the server’s
listening address. Note that a unique id must be set for every WAN participant, and this entry should also be
included in connection address. Refer to WAN Participant and
WAN Configuration for more information. You may also have a look at
WAN Example for a detailed explanation on how to configure this kind of participant.

Following is an example of client and server configuration files:

client-ddsrouter.yaml

version: v2.0

allowlist:
 - name: Square

participants:

 - name: SimpleParticipant
 kind: local
 domain: 0

 - name: ClientWAN
 kind: wan
 discovery-server-guid:
 id: 1
 connection-addresses:
 - discovery-server-guid:
 id: 0
 addresses:
 - ip: 192.168.1.8
 port: 11800
 transport: udp
 listening-addresses:
 - ip: 192.168.1.4
 port: 11008
 transport: udp

server-ddsrouter.yaml

version: v2.0

allowlist:
 - name: Square

participants:

 - name: SimpleParticipant
 kind: local
 domain: 1

 - name: ServerWAN
 kind: wan
 discovery-server-guid:
 id: 0
 listening-addresses:
 - ip: 192.168.1.8
 port: 11800
 transport: udp

2.3. Router execution

Now, with the configuration files ready, launching a DDS Router instance is as easy as executing the following command:

ddsrouter -c config-file.yaml

After setting up both routers, communication between the two ShapesDemo instances should have been established so the
square shape is now visible in the subscriber’s panel.

[image: ../../_images/shapesdemo_square.png]

DDS Router supports the dynamic addition/deletion of topics at runtime (see
Reload Topics). Let us test this feature by adding the circle topic to
the allowlist of both routers. Also, by removing the square topic (removing this topic from one of the routers’
allowlist will suffice) the square data should stop reaching the subscriber. Alternatively, the square topic may be
added to the blocklist, achieving the same effect. See Topic Filtering for more details
on allowlisting.

allowlist:
 - name: Circle

After applying these changes, the square should no longer be updated in the subscriber’s side (appearing visible but
frozen), while the circle should.

[image: ../../_images/shapesdemo_circle.png]

Please feel free to explore sections Examples and Use Cases for more
information on how to configure and set up a router, as well as to discover multiple scenarios where DDS Router may
serve as a useful tool.

1. User Interface

eProsima DDS Router is a user application executed from command line and configured through a YAML configuration file.

	Source Dependency Libraries

	Application Arguments

	Configuration File

	Reload Topics

	Close Application

1.1. Source Dependency Libraries

eProsima DDS Router depends on Fast DDS fastrtps and fastcdr libraries.
In order to correctly execute the Router, make sure that fastrtps and fastcdr are properly sourced.

source <path-to-fastdds-installation>/install/setup.bash

Note

If Fast DDS has been installed in the system, these libraries would be sourced by default.

1.2. Application Arguments

The DDS Router application supports several input arguments:

	Command

	Option

	Long option

	Value

	Default Value

	Help Argument

	-h

	--help

	
	

	Configuration File Argument

	-c

	--config-path

	Readable File Path

	./DDS_ROUTER_CONFIGURATION.yaml

	Reload Time Argument

	-r

	--reload-time

	Unsigned Integer

	0

	Debug Argument

	-d

	--debug

	
	

1.2.1. Help Argument

It shows the usage information of the application.

Usage: Fast DDS Router
Connect different DDS networks via DDS through LAN or WAN.
It will build a communication bridge between the different Participants included in the provided configuration file.
To stop the execution gracefully use SIGINT (C^) or SIGTERM (kill) signals.
General options:
-h --help Print this help message.
-c --config-path Path to the Configuration File (yaml format) [Default: ./DDS_ROUTER_CONFIGURATION.yaml].
-r --reload-time Time period in seconds to reload configuration file. This is needed when File Watcher
 functionality is not available (e.g. config file is a symbolic link).
 Value 0 does not reload file. [Default: 0].
-d --debug Activate debug Logs (be aware that some logs may require specific CMAKE compilation options).

1.2.2. Configuration File Argument

Please refer to Configuration File for more information on how to build this
configuration file.

1.2.3. Reload Time Argument

Set the Reload Timer in seconds.

1.2.4. Debug Argument

Activate INFO and DEBUG logs for the DDS Router execution.
For this argument to work, the DDS Router must have been compiled with CMake option CMAKE_BUILD_TYPE=Debug,
or compiled with CMake option LOG_INFO=ON.

Note

If this option is enabled and Fast DDS has been compiled in debug mode, it will print the logs of the DDS Router
and Fast DDS mixed.
In order to skip Fast DDS logs, compile fastrtps library with CMake option -DLOG_NO_INFO=ON
or CMAKE_BUILD_TYPE different to Debug.

1.3. Configuration File

A DDS Router requires one and only one YAML configuration file as the operation of this application is
configured via this YAML configuration file.
Please refer to DDS Router Configuration for more information on how to build this
configuration file.

This YAML configuration file must be passed as argument to the DDS Router when executed.
If no configuration file is provided as argument, the DDS Router will attempt to load a file named
DDS_ROUTER_CONFIGURATION.yaml that must be in the same directory where the application is executed.
If no configuration file is passed as argument, and the default configuration file does not exist
in the current directory, the application will fail.

1.4. Reload Topics

The topics that the DDS Router is routing could be changed at runtime.
Including topics in configuration’s allowlist will create new Writers and
Readers for each Participant in the Router.
Removing a topic from allowlist will disable this topic, and so it will stop routing data in such topic.
Be aware that disabling a topic does not eliminate the entities of that topic.
So, if a topic has been active before, the Writers and Readers will still be present in the DDS Router and will still
receive data.

There exist two methods to reload the list of allowed topics, an active and a passive one.
Both methods work over the same configuration file with which the DDS Router has been initialized.

1.4.1. File Watcher

A File Watcher is a process that runs in the background and watches for changes in the DDS Router configuration file.
Every time the file is changed, the OS sends a notification, and the File Watcher listens such notification
and interacts with the DDS Router in order to reload the topics.
This event occurs every time the configuration file is saved.

FileWatcher is used in every DDS Router execution by default.
However, this method does not work properly in specific scenarios where the file being watched is not a real file but
a link (e.g. Kubernetes executions).

1.4.2. Reload Timer

A timer could be set in order to periodically reload the configuration file.
The configuration file will be automatically reloaded according to the specified time period.

1.5. Close Application

In order to stop a DDS Router application, use one of the following OS signals:

1.5.1. SIGINT

Send an interruption SIGINT | ^C signal (signal value 2) to the process.
Press Ctrl + C in the terminal where the process is running.

1.5.2. SIGTERM

Send an interruption SIGTERM signal (signal value 15) to the process.
Write command kill <pid> in a different terminal, where <pid> is the id of the process running the DDS Router.
Use ps or top programs to check the process ids.

2. DDS Router Participant

DDS Router Participant is a DDS Router entity that works as an interface between a network and
the core of the router.
Participants are the main elements inside the DDS Router functionality.

	Participant

	Participant Name

	Participant Kind

	Participant creation

	Participant kinds

2.1. Participant

A Participant is an abstraction over the DDS DomainParticipant.
This entity manages the dynamic discovery of DDS entities on a specific network or interface.
Each Participant is uniquely identified by a Participant Name in a DDS Router execution and has a
predefined Participant Kind that specifies the internal general functionality of the Participant.

2.1.1. Participant Name

It is an alphanumeric string that uniquely identifies a Participant in a DDS Router execution.

2.1.2. Participant Kind

It specifies the kind of the Participant.
There are several Participant kinds already defined, which will specify in general terms how the
Participant behaves.

2.2. Participant creation

Each participant configuration is specified as a different item of participants array, and each of these
configurations has a unique Participant Name that should not be repeated in a DDS Router execution.

Each Participant Kind is associated with one or several names or aliases that represent it.
In order to use a Participant of a specific kind, use kind tag in the yaml configuration file, or set the
Participant Name as the alias of the kind.
If the kind is not any of the valid aliases, the Participant will not be created and the
execution will fail.

Note

There could be as many Participants as required, and their kinds could be repeated,
but all names must be unique.

Below are some examples on how to configure a Participant:

- name: participant_1 # New Participant with Name = 'participant_1'
 kind: simple # 'participant_1' will be created of kind 'simple'
 extra_configuration: ...

- name: simple # New Participant with Name = 'simple' and Kind = 'simple'
 extra_configuration: ...

2.3. Participant kinds

Below is the list with all the available Participant Kinds.

	Participant Kind

	Aliases

	Specific

configuration tags

	Description

	Echo Participant

	echo

	
	Print in stdout every data received.

	Simple Participant

	simple

local

	domain

	Simple DDS DomainParticipant.

	Local Discovery Server Participant

	discovery-server

local-ds

ds

	guid

listening-addresses

connection-addresses

tls

	Discovery Server DDS DomainParticipant

for local communication.

	WAN Participant

	wan

router

	guid

listening-addresses

connection-addresses

tls

	Discovery Server DDS DomainParticipant

for WAN communication.

2.3.1. Echo Participant

This Participant prints in stdout every data that is received by the DDS Router.
The resulted logs contain the echo Participant Name, the source Endpoint Guid that has
originally generated the message, the Topic where this message has been received,
and the Payload (in hexadecimal format) received.
Notice that this Payload is the same that a standard DDS DataReader will receive if it is connected to one
of the Participants of the DDS Router.

Echo Participant: <participant_id> has received from Endpoint: <endpoint_guid> in topic: <endpoint_topic> the following payload: <payload>

This is an example of a message received by a DDS Router in a Participant connected to a ROS2 talker
and written by an Echo Participant:

Echo Participant: ParticipantId{echo} has received from Endpoint: 01.0f.b8.a8.2e.69.b1.47.01.00.00.00|0.0.12.3 in topic: Topic{rt/chatter, std_msgs::msg::dds_::String_} the following payload: <Payload{00 01 00 00 0f 00 00 00 48 65 6c 6c 6f 20 57 6f 72 6c 64 3a 20 31 00 00}>

Note

This Participant does not perform any discovery or data reception functionality.

2.3.1.1. Use case

Use this Participant in order to see in stdout the data that is being relayed by the router.
All the data received by any of the Participants of the router will be printed with timestamp, topic and source guid
along with the payload.

2.3.1.2. Kind aliases

	echo

2.3.1.3. Configuration

Echo Participant does not allow any configuration.

2.3.1.4. Configuration Example

- name: echo_participant # Participant Name = echo_participant
 kind: echo

2.3.2. Simple Participant

This kind of Participant refers to a Simple DDS DomainParticipant.
This Participant will discover all Participants deployed in its own local network in the same domain via multicast
communication,and will communicate with those that share publication or subscription topics.

2.3.2.1. Use case

Use this Participant in order to communicate an internal standard DDS network, such as a ROS 2 or Fast DDS network
in the same LAN.

2.3.2.2. Kind aliases

	simple

	local

2.3.2.3. Configuration

The only configuration required to start a Simple Participant is the Domain Id
on which it will listen for DDS communications.
Check Configuration section for further details.

2.3.2.4. Configuration Example

- name: simple_participant # Participant Name = simple_participant
 kind: simple
 domain: 2 # Domain Id = 2

2.3.3. Local Discovery Server Participant

This kind of Participant refers to a Discovery Server DomainParticipant.
This Participant will work as discovery broker for those Participants that connect to it (clients or servers).
It could also connect to one or multiple Discovery Servers to create a Discovery Server Network.

2.3.3.1. Use case

Use this Participant in order to communicate an internal DDS network using Discovery Server.
This is highly useful in networks that do not support multicast communication;
or to reduce the number of meta-traffic packets exchanged in discovery,
reducing the network traffic in the discovery process.

2.3.3.2. Kind aliases

	discovery-server

	local-ds

	ds

2.3.3.3. Configuration

Local Discovery Server Participant allow configure the standard attributes of a Discovery Server.

	To configure the Discovery Server GuidPrefix, check the following section
Configuration section.

	To configure the Discovery Server listening addresses, check the following section
Configuration section.

	To configure the Discovery Server connection addresses to connect with other Discovery Servers,
check the following section
Configuration section.

Note

The network addresses set in listening-addresses and connection-addresses use UDP transport by default
if the transport is not specified in the address configuration.

2.3.3.4. Configuration Example

Configure a Local Discovery Server setting the GuidPrefix used for ROS 2 deployments with id 2
(44.53.02.5f.45.50.52.4f.53.49.4d.41).
It listens for clients in localhost in ports 11600 in UDP and 11601 in TCP.
This example connects the local Discovery Server Participant with a remote Discovery Server listening in IPv6 address
2001:4860:4860::8888 and port 11666 and configured with 01.0f.04.00.00.00.00.00.00.00.ca.fe
Discovery Server GuidPrefix.

- name: local_discovery_server_participant # Participant Name = local_discovery_server_participant

 kind: discovery-server

 discovery-server-guid:
 id: 2
 ros-discovery-server: true # ROS Discovery Server id => GuidPrefix = 44.53.02.5f.45.50.52.4f.53.49.4d.41

 listening-addresses: # Local Discovery Server Listening Addresses
 - ip: 127.0.0.1 # Use UDP by default
 port: 11600
 - ip: 127.0.0.1
 port: 11601
 transport: tcp # Use TCP transport

 connection-addresses: # External Discovery Server Listening Addresses
 - discovery-server-guid:
 id: 4 # External Discovery Server id => GuidPrefix = 01.0f.04.00.00.00.00.00.00.00.ca.fe
 addresses:
 - ip: 2001:4860:4860::8888 # Use UDP by default
 port: 11666

2.3.4. WAN Participant

This type of Participant refers to a Discovery Server DomainParticipant that communicates
with other WAN Participants in different networks.
This Participant will work as bridge for every Participant working locally in the LAN and any other LAN that has
a DDS Router with an active WAN Participant.

Warning

Do not try to communicate a WAN Participant with any other kind of Participant that is not of type
WAN Participant.

2.3.4.1. Use case

Use this Participant to communicate an internal DDS network with other LANs through a WAN communication.
Each of the networks to be connected require a running DDS Router, and the messages will be relay from one to
another depending on the topics filtered by each of them.

2.3.4.2. Kind aliases

	wan

	router

2.3.4.3. Configuration

WAN Discovery Server Participant allow configure the standard attributes of a Discovery Server.

	To configure the Discovery Server GuidPrefix, check the following section
Configuration section.

	To configure the Discovery Server listening addresses, check the following section
Configuration section.

	To configure the Discovery Server connection addresses to connect with other Discovery Servers,
check the following section
Configuration section.

Note

The network addresses set in listening-addresses and connection-addresses use UDP transport by default
if the transport is not specified in the address configuration.

2.3.4.3.1. WAN Configuration

Refer to section WAN Configuration for detailed explanation on how to correctly configure
the DDS Router for WAN communication.

2.3.4.4. Configuration Example

Configure a WAN Discovery Server with GuidPrefix id 2 (01.0f.02.00.00.00.00.00.00.00.ca.fe).
It listens for clients in public IP 82.0.0.1 in port 11600 in TCP.
It connects with a remote WAN Participant in IPv6 address 2001:4860:4860::8888 and port 11666 which Discovery
Server GuidPrefix is 01.0f.04.00.00.00.00.00.00.00.ca.fe using UDP transport.

- name: wan_participant # Participant Name = wan_participant

 kind: wan

 discovery-server-guid:
 id: 2 # GuidPrefix = 01.0f.02.00.00.00.00.00.00.00.ca.fe

 listening-addresses: # WAN Discovery Server Listening Addresses
 - ip: 82.0.0.1 # Use UDP by default
 port: 11600

 connection-addresses: # Another WAN Participant Listening Addresses
 - discovery-server-guid:
 id: 4 # External Discovery Server id => GuidPrefix = 01.0f.04.00.00.00.00.00.00.00.ca.fe
 addresses:
 - ip: 2001:4860:4860::8888
 port: 11666
 transport: udp # Use UDP transport

3. DDS Router Configuration

A DDS Router is configured by a .yaml configuration file.
This .yaml file contains all the information regarding the DDS Router configuration, such as topics filtering
and Participants configurations.

3.1. Configuration version

The YAML Configuration support a version value to identify the configuration version to parse the file.
In future releases could be common to change the YAML format (some key words,
fields, etc.).
This value allow to keep using the same YAML file using an old configuration format, maintaining compatibility
with future releases.

	Configuration Versions

	String in version tag

	DDS Router activation release

	version 1.0

	v1.0

	v0.1.0

	version 2.0

	v2.0

	v0.2.0

Current configuration version is ``v2.0``.
This is the configuration version that is described along this page.

Note

The current default version when tag version is not set is v1.0.

Warning

Deprecation Warning.
In future releases tag version will be mandatory.

3.2. Topic Filtering

DDS Router allows filtering of DDS Topics, that is, it allows to define which DDS Topics are going to be
relayed by the application.
This way, it is possible to define a set of rules in DDS Router to filter those data samples the user does not wish to
forward.

It is not mandatory to define such set of rules in the configuration file. In this case, a DDS Router will forward all
the data published under the topics that it automatically discovers within the DDS network to which it connects.

To define these data filtering rules based on the Topics to which they belong, three lists are available:

	Allowed topics list (allowlist)

	Block topics list (blocklist)

	Builtin topics list (builtin-topics)

These three lists of topics listed above are defined by a tag in the YAML configuration file, which defines a
YAML vector ([]).
This vector contains the list of topics for each filtering rule.
Each Topic is determined by its entries name, type and keyed, with only the first one being mandatory.

	Topic entries

	Data type

	Default value

	name

	string

	-

	type

	string

	"*"

	keyed

	bool

	Both true and false

The entry keyed determines whether the corresponding topic is keyed [https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/typeSupport/typeSupport.html#data-types-with-a-key]
or not. See Topic section for further information about the topic.

Note

Tags allowlist, blocklist and builtin-topics must be at yaml base level (it must not be inside any
other tag).

Note

Placing quotation marks around values in a YAML file is generally optional. However, values containing wildcard
characters must be enclosed by single or double quotation marks.

3.2.1. Allow topic list (allowlist)

This is the list of topics that DDS Router will forward, i.e. the data published under the topics matching the
expressions in the allowlist will be relayed by DDS Router.

Note

If no allowlist is provided, data will be forwarded for all topics (unless filtered out in blocklist).

3.2.2. Block topic list (blocklist)

This is the list of topics that the DDS Router will block, that is, all data published under the topics matching the
filters specified in the blocklist will be discarded by the DDS Router and therefore will not be relayed.

This list takes precedence over the allowlist.
If a topic matches an expression both in the allowlist and in the blocklist, the blocklist takes precedence,
causing the data under this topic to be discarded.

3.2.3. Builtin topics list (builtin-topics)

DDS Router includes a mechanism to automatically detect which topics are being used in a DDS network.
By automatically detecting these topics, a DDS Router creates internal DDS Writers
and Readers for each topic and for each Participant in order to relay the data published on each
discovered topic.

The discovery phase of the network topics can be accelerated by using the builtin topic list (builtin-topics).
By defining topics in this list, the DDS router will create the DataWriters and DataReaders for these topics without
waiting for them to be discovered.
In this way, the initialization phase mentioned above is omitted and the application launching efficiency is improved.

Note that, for every topic contained in this list, both name and type must be specified and contain no wildcard
characters. The entry keyed is optional, and defaults to false.

3.2.4. Examples of usage

The following is an example of how to use the allowlist, blocklist and builtin-topics configurations to
setup the DDS Router filtering rules.

3.2.4.1. Dynamic topic discovery example

This example shows how the DDS Router is initially configured to forward the rt/chatter topic (default ROS 2
topic for talker and listener) with type name std_msgs::msg::dds_::String_, while the rest of the
topics in the DDS network are expected to be dynamically discovered.
Additionally, two rules are specified in the blocklist in order to filter out messages of no interest to the user.

builtin-topics:
 - name: rt/chatter
 type: std_msgs::msg::dds_::String_

blocklist:
 - name: "rq/*"
 - name: "rr/*"

builtin-topics:
 - name: rt/chatter
 type: std_msgs::msg::dds_::String_

3.2.4.2. Allowlist and blocklist collision

In the following example, the HelloWorldTopic topic is both in the allowlist and (implicitly) in the
blocklist, so according to the blocklist preference rule this topic is blocked.
Moreover, only the topics present in the allowlist are relayed, regardless of whether more topics are dynamically
discovered in the DDS network.
In this case the forwarded topics are AllowedTopic1 and AllowedTopic2.

allowlist:
 - name: AllowedTopic1
 type: Allowed
 - name: AllowedTopic2
 type: "*"
 - name: HelloWorldTopic
 type: HelloWorld

blocklist:
 - name: "*"
 type: HelloWorld

3.3. Participant Configuration

At the yaml base level, along with builtin-topics tag, there will be the tag participants.
participants handles an array of Participant configurations.
Each Participant is identified by a unique Participant Name and requires to set the kind of the Participant.
There could be any number of Participants, and Participant kinds could be repeated.

Each Participant has its specific configuration.
Please, refer to Participant kinds in order to see each of the
Participant Kinds requirements.

Warning

Do not configure two Participants in a way that they can communicate to each other (e.g. two Simple participants
in the same domain).
This will lead to an infinite feedback loop between each other.

In the following configuration example, the DDS Router will create two
Simple Participants, one for domain 0 and one for domain 1.
This is a typical use case of DDS Domain bridge.
The topics allowed in the two domains will start communicating to each other.
Note that the communication is not P2P performed between the end-user DDS entities,
i.e. the data must reach the DDS Router and this will forward the data.

participants: # Tag to introduce the participants configurations array

################

 - name: Participant0 # Participant Name = Participant0
 kind: local # Participant Kind = simple
 domain: 0 # DomainId = 0

################

 - name: my_custom_part # Participant Name = my_custom_part
 kind: simple # Participant Kind = echo
 domain: 1 # DomainId = 1

The first Participant Participant0 has Participant Name Participant0 and is configured to be of the simple
Participant Kind, and to communicate locally in domain 0.
The second Participant has Participant Name simple and it is configured to be of the simple kind and to communicate
locally with domain 1.

3.4. Domain Id

Tag domain configures the Domain Id of a specific Participant.
Be aware that some Participants (e.g. Discovery Servers) does not need a Domain Id configuration.

domain: 101

3.5. Network Address

Network Addresses are elements that can be configured for specific Participants.
An Address is defined by:

	IP: IP of the host (public IP in case of WAN communication).

	Port: Port where the Participant is listening.

	Transport Protocol: UDP or TCP.
If it is not set, it would be chosen by default depending on the Participant Kind.

	IP version: v4 or v6.
If it is not set, it would be chosen depending on the IP string format.

	Domain Name: Domain unique name to ask DNS server for the related IP.
This field is ignored if ip is specified.

ip: 127.0.0.1
port: 11666
transport: tcp
ip-version: v4

################

ip: 2001:4860:4860::8844 # Recognized as IPv6
port: 1616

################

domain: localhost # DNS call return value = 127.0.0.1
port: 33333

3.6. Discovery Server GuidPrefix

A Discovery Server requires a DDS GuidPrefix in order to other Participants connect to it.
Under the discovery-server-guid tag, there are several possibilities for configuring a GuidPrefix.

3.6.1. Discovery Server GuidPrefix by string

The GuidPrefix of the Discovery Server can be configured using guid tag.
Be aware of using the correct format for GuidPrefix.
That is, 12 hexadecimal numbers (lower than ff) separated with ..

discovery-server-guid:
 guid: "1.f.1.0.0.0.0.0.0.0.ca.fe" # GuidPrefix = 01.0f.01.00.00.00.00.00.00.00.ca.fe

3.6.2. Discovery Server GuidPrefix by Id

Using tag id, the GuidPrefix will be calculated arbitrarily using a default DDS Router GuidPrefix.
This default GuidPrefix is 01.0f.<id>.00.00.00.00.00.00.00.ca.fe.
Default value for id is 0.
This entry is ignored if guid is specified.

discovery-server-guid:
 id: 13 # GuidPrefix = 01.0f.0d.00.00.00.00.00.00.00.ca.fe

Note

In the current version of the DDS Router only ids in the range 0 to 256 are allowed.
In future releases it would be implemented to allow a wider range of ids.

3.6.3. ROS Discovery Server GuidPrefix

There is a specific GuidPrefix for ROS 2 executions, so it could be used using Fast DDS CLI and
ROS 2 ROS_DISCOVERY_SERVER environment variable
(https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/ros2/discovery_server/ros2_discovery_server.html).

The ROS 2 Discovery Server GuidPrefix is set by default to 44.53.<id>.5f.45.50.52.4f.53.49.4d.41 where <id>
is the specific id of the Server.
This GuidPrefix also allow an id` value to specify which id is used in the GuidPrefix.
Default value for id is 0.

discovery-server-guid:
 ros-discovery-server: true # GuidPrefix = 44.53.x.5f.45.50.52.4f.53.49.4d.41
 id: 13 # GuidPrefix = 44.53.0d.5f.45.50.52.4f.53.49.4d.41

3.7. Discovery Server Listening Addresses

Tag listening-addresses configures the network addresses where the Discovery Server configured is going to
listen for remote clients or servers.
listening-addresses is key for an array of Network Addresses.

listening-addresses:
 - ip: 127.0.0.1 # UDP by default
 port: 11667
 - ip: 2001:4860:4860::8844 # Recognized as IPv6
 port: 11668
 transport: tcp

3.8. Discovery Server Connection Addresses

Tag connection-addresses configure a connection with one or multiple remote Discovery Servers.
connection-addresses is the key for an array in which each element has a GuidPrefix referencing the Discovery
Server to connect with; and a tag addresses configuring the addresses of such Discovery Server.
Each element inside addresses must follow the configuration for Network Address.

connection-addresses:
 - discovery-server-guid:
 guid: 44.53.0d.5f.45.50.52.4f.53.49.4d.41
 addresses:
 - ip: 127.0.0.1
 port: 11666
 - discovery-server-guid:
 id: 4
 addresses:
 - ip: 2001:4860:4860::8888
 port: 11667
 transport: tcp
 - ip: 2001:4860:4860::8844
 port: 11668
 transport: tcp

3.9. General Example

A complete example of all the configurations described on this page can be found below.

Version Latest
version: v2.0

Relay topic rt/chatter and type std_msgs::msg::dds_::String_
Relay topic HelloWorldTopic and type HelloWorld

builtin-topics:
 - name: rt/chatter
 type: std_msgs::msg::dds_::String_
 - name: HelloWorldTopic
 type: HelloWorld

participants:

####################

Simple DDS Participant in domain 3

 - name: Participant0 # Participant Name = Participant0

 kind: local # Participant Kind = local (= simple)

 domain: 3 # DomainId = 3

####################

Discovery Server DDS Participant with ROS GuidPrefix so a local ROS 2 Client could connect to it
This Discovery Server will listen in ports 11600 and 11601 in localhost

 - name: ServerROS2 # Participant Name = ServerROS2

 kind: local-discovery-server # Participant Kind = local-discovery-server

 discovery-server-guid:
 id: 1
 ros-discovery-server: true # ROS Discovery Server id => GuidPrefix = 44.53.01.5f.45.50.52.4f.53.49.4d.41

 listening-addresses: # Local Discovery Server Listening Addresses
 - ip: 127.0.0.1 # IP = localhost ; Transport = UDP (by default)
 port: 11600 # Port = 11600
 - ip: 127.0.0.1 # IP = localhost
 port: 11601 # Port = 11601
 transport: udp # Transport = UDP

####################

Participant that will communicate with a DDS Router in a different LAN.
This Participant will work as the remote DDS Router Client, so it set the connection address of the remote one.

 - name: Wan # Participant Name = Wan ; if kind is not specified, this value is used to determine the Participant Kind

 discovery-server-guid:
 id: 2 # Internal WAN Discovery Server id => GuidPrefix = 01.0f.02.00.00.00.00.00.00.00.ca.fe

 connection-addresses: # WAN Discovery Server Connection Addresses
 - discovery-server-guid:
 id: 4 # External WAN Discovery Server id => GuidPrefix = 01.0f.04.00.00.00.00.00.00.00.ca.fe
 addresses:
 - ip: 8.8.8.8 # IP = 8.8.8.8
 port: 11666 # Port = 11666
 transport: tcp # Transport = TCP

4. WAN Configuration

In order to communicate a DDS Router via WAN, some configurations may be required.

4.1. NAT Traversal

If the DDS Router is under a NAT, a remote DDS Router in a different LAN will not be able to
reach it.
Thus, NAT traversal methods will be required.
The most common method that we recommend is configuring the network router so it forwards a specific port from
the internet to a specific host.

4.1.1. Port Forwarding

This is the easiest way to achieve NAT traversal.
Most network routers support a graphical interface where port forwarding could be easily set.

4.2. TCP vs UDP

TCP and UDP are two well known network transport protocols.
Both have their advantages and disadvantages regarding the scenario.
These are a list of tips to help choosing whether to use one or the other.

	Feature

	UDP

	TCP

	Communication

speed

	Fast

	Slower

	Reliability

	No Transport Layer reliability

(could has DDS reliability)

	Transport Layer reliability

(duplicated if DDS reliability is used)

	Port Forwarding

	Require both sides of the communication

to have ports forwarded from the router.

	Require only server side of the communication

to have port forwarded from the router.

Note

DDS is thought to work over UDP and has its own reliability mechanisms.
Thus, the DDS Router uses UDP transport by default for every address that has not explicitly specified
a transport in the configuration file.

4.2.1. TLS

eProsima DDS Router also supports TLS over TCP [https://fast-dds.docs.eprosima.com/en/latest/fastdds/transport/tcp/tls.html],
and its configuration can be set per participant for types Local Discovery Server and WAN. Following is a list of the
accepted entries under the tls tag:

	Tag

	Requiredness

	Description

	ca

	Mandatory for TLS servers and clients

	Path to the CA (Certification- Authority) file.

	password

	Optional for TLS servers

	Password of the private_key file.

	private_key

	Mandatory for TLS servers

	Path to the private key certificate file.

	cert

	Mandatory for TLS servers

	Path to the public certificate chain file.

	dh_params

	Mandatory for TLS servers

	Path to the Diffie-Hellman parameters file.

Note

Although in principle only required for TLS clients, the CA (Certification- Authority) file must also be provided
for TLS servers, as they might assume the client role when connecting to other participants configured as servers.

4.3. Examples

4.3.1. TCP Port Forwarding Example

Let be the scenario where user A host HA has a private IP 192.168.1.2 given by network router
RA, with a public IP 1.1.1.1.
Let user B with host HB has a private IP 192.168.2.2 given by network router RB,
with a public IP 2.2.2.2.
A will act as server of the TCP communication, while B will act as client.

User A should set a port forwarding rule in router RA as 11666 -> 192.168.1.2:11666.
That is, every datagram that arrives to IP 1.1.1.1:11666 will be forwarded to 192.168.1.2:11666
(it is required to use the same public port as the internal one).
User A should set its listening-addresses as follows:

- name: WANServerParticipant_userA
 kind: wan

 discovery-server-guid:
 id: 2 # Id to generate the GuidPrefix of the Discovery Server of A
 listening-addresses:
 - ip: 1.1.1.1 # Public IP of host Ha
 port: 11666 # Port forwarded router Ra
 transport: tcp # Transport protocol

User B should set connection-addresses to connect to HA as follows:

- name: WANClientParticipant_userB
 kind: wan

 discovery-server-guid:
 id: 3 # Must be different than A one
 connection-addresses:
 - discovery-server-guid:
 id: 2 # Id of the Discovery Server of A
 addresses:
 - ip: 1.1.1.1 # Public IP of Ha
 port: 11666 # Port forwarded in Ra
 transport: tcp # Transport protocol

This way, B will connect to A.
A will be able to receive the message because RA will forward the message to HA.
Once A has received the message, a TCP channel will be set, and the communication will travel both ways without
requiring to traverse any other NAT.

4.3.2. UDP Port Forwarding Example

Let be the scenario where user A host HA has a private IP 192.168.1.2 given by network router
RA, with a public IP 1.1.1.1.
Let user B with host HB has a private IP 192.168.2.2 given by network router RB,
with a public IP 2.2.2.2.
A and B will communicate via UDP, so there is no need to set a client and a server.
It does not matter whether A knows B address, B knows A, or both know each other.
In this example, B will know A address, and not the other way around.

User A should set a port forwarding rule in router RA as 11666 -> 192.168.1.2:11666.
That is, every datagram that arrives to IP 1.1.1.1:11666 will be forwarded to 192.168.1.2:11666
(it is required to use same public port as the internal one).
User A should set its listening-addresses as follows:

- name: WANServerParticipant_userA
 kind: wan

 discovery-server-guid:
 id: 2 # Id to generate the GuidPrefix of the Discovery Server of A
 listening-addresses:
 - ip: 1.1.1.1 # Public IP of host Ha
 port: 11666 # Port forwarded router Ra

User B should set a port forwarding rule in router RB as 11777 -> 192.168.2.2:11777.
This is, every datagram that arrives to IP 2.2.2.2:11777 will be forwarded to 192.168.2.2:11777
(It is necessary to use same public port as the internal one).
User B should set its listening-addresses and connection-addresses as follows:

- name: WANClientParticipant_userB
 kind: wan

 discovery-server-guid:
 id: 3 # Must be different than A one
 listening-addresses:
 - ip: 2.2.2.2 # Public IP of host Hb
 port: 11777 # Port forwarded router Rb
 connection-addresses:
 - discovery-server-guid:
 id: 2 # Id of the Discovery Server of A
 addresses:
 - ip: 1.1.1.1 # Public IP of Ha
 port: 11666 # Port forwarded in Ra

This way, B will connect to A.
Once A receives the message from B, it will communicate with it via address 2.2.2.2:11777.
B will continue communicating with A via address 1.1.1.1:11666.

4.3.3. TLS Configuration Example

Below is an example on how to configure a WAN participant as a TLS server and client:

- name: TLS_Server
 kind: wan

 discovery-server-guid:
 id: 0
 listening-addresses:
 - ip: 1.1.1.1
 port: 11666
 transport: tcp

 tls:
 ca: ca.crt
 password: ddsrouterpass
 private_key: ddsrouter.key
 cert: ddsrouter.crt
 dh_params: dh_params.pem

- name: TLS_Client
 kind: wan

 discovery-server-guid:
 id: 1
 connection-addresses:
 - discovery-server-guid:
 id: 0
 addresses:
 - ip: 1.1.1.1
 port: 11666
 transport: tcp

 tls:
 ca: ca.crt

You may also have a look at <path/to/ddsrouter_tool>/share/resources/configurations/security/ directory, which
contains examples of key and certificate files as well as a script with the commands used to generate them.

5. Nomenclature

5.1. DDS Router nomenclature

	Payload
	Raw data (no format specified) that is received and sent forward from the DDS Router.

5.1.1. Participant nomenclature

	Participant
	DDS Router communication Interface.
It is an abstraction over DDS DomainParticipant.

This term is explained here.

	Participant Name
	Unique identifier of a Participant.

This term is explained here.

	Participant Kind
	Element that identifies a Participant kind.
It can be set as a string that references an alias of an existing Participant Kind.

This term is explained here.

5.2. DDS nomenclature

	DataReader
	DDS element that subscribes to a specific Topic.
It belong to one and only one Participant, and it is uniquely identified by a Guid.

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/subscriber/subscriber.html]
for further information.

	DataWriter
	DDS entity that publish data in a specific Topic.
It belong to one and only one Participant, and it is uniquely identified by a Guid.

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/publisher/dataWriter/dataWriter.html]
for further information.

	Discovery Server
	Discovery Server Discovery Protocol is a Fast DDS feature that enables a new Discovery mechanism based on a
Server that filters and distribute the discovery information.
This is highly recommended in networks where multicast is not available (e.g. WAN).

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/discovery/discovery_server.html]
for further information.

	Domain Id
	The Domain Id is a virtual partition for DDS networks.
Only DomainParticipants with the same Domain Id would be able to communicate to each other.
DomainParticipants in different Domains will not even discover each other.

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1//fastdds/dds_layer/domain/domain.html]
for further information.

	DomainParticipant
	A DomainParticipant is the entry point of the application to a DDS Domain.
Every DomainParticipant is linked to a single domain from its creation, and cannot change such domain.
It also acts as a factory for Publisher, Subscriber and Topic.

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/domain/domainParticipant/domainParticipant.html]
for further information.

	Endpoint
	DDS element that publish or subscribes in a specific Topic. Endpoint kinds are DataWriter or DataReader.

	Guid
	Global Unique Identifier.
It contains a GuidPrefix and an EntityId.
The EntityId uniquely identifies sub-entities inside a Participant.
Identifies uniquely a DDS entity (DomainParticipant, DataWriter or DataReader).

	GuidPrefix
	Global Unique Identifier shared by a Participant and all its sub-entities.
Identifies uniquely a DDS Participant.

	Topic
	DDS isolation abstraction to encapsulate subscriptions and publications.
Each Topic is uniquely identified by a topic name and a topic type name (name of the data type it transmits).

See Fast DDS documentation [https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/topic/topic.html]
for further information.

1. Echo Example

The following YAML configuration file configures a DDS Router to create a
Simple Participant in Domain Id 0 and an
Echo Participant that will print in stdout every message get in Domain 0.

##################################
CONFIGURATION VERSION
version: v2.0 # 0

##################################
ALLOWED TOPICS
Allowing FastDDS and ROS2 HelloWorld demo examples topics

allowlist:
 - name: HelloWorldTopic # 1
 type: HelloWorld # 1
 - name: rt/chatter # 2
 type: std_msgs::msg::dds_::String_

##################################
PARTICIPANTS
participants:

##################################
SIMPLE PARTICIPANT
This participant will subscribe to topics in allowlist in specific domain and listen every message published there

 - name: SimpleParticipant # 3
 kind: local # 4
 domain: 0 # 5

##################################
ECHO PARTICIPANT
This Participant will print in stdout every message received by the other Participants

 - name: EchoParticipant # 6
 kind: echo # 7

1.1. Configuration

1.1.1. Allowed Topics

This section lists the Topics that the DDS Router will route from
one Participant to the other.
Topic HelloWorldTopic with datatype HelloWorld,
and ROS 2 topic rt/chatter with datatype std_msgs::msg::dds_::String_ will be forwarded from
SimpleParticipant to EchoParticipant, that will print the message in stdout.

allowlist:
 - name: HelloWorldTopic # 1
 type: HelloWorld # 1
 - name: rt/chatter # 2
 type: std_msgs::msg::dds_::String_

1.1.2. Simple Participant

This Participant is configured with a name, a kind and the Domain Id, which is 0 in this case.

 - name: SimpleParticipant # 3
 kind: local # 4
 domain: 0 # 5

1.1.3. Echo Participant

This Participant does not require further configuration than name and kind.

 - name: EchoParticipant # 6
 kind: echo # 7

1.2. Execute example

For a detailed explanation on how to execute the DDS Router, refer to this section.

1.2.1. Execute with Fast DDS HelloWorld Example

Execute a Fast DDS HelloWorld example:

./DDSHelloWorldExample publisher

Execute DDS Router with this configuration file (available in
<path/to/ddsrouter_tool>/share/resources/configurations/examples/echo.yaml).
The expected output from the DDS Router, printed by the Echo Participant is:

Echo Participant: ParticipantId{EchoParticipant} has received from Endpoint: 01.0f.44.59.e6.de.2a.c8.01.00.00.00|0.0.1.3 in topic: Topic{HelloWorldTopic, HelloWorld} the following payload: <Payload{00 01 00 00 01 00 00 00 0b 00 00 00 48 65 6c 6c 6f 57 6f 72 6c 64 00 00}>
Echo Participant: ParticipantId{EchoParticipant} has received from Endpoint: 01.0f.44.59.e6.de.2a.c8.01.00.00.00|0.0.1.3 in topic: Topic{HelloWorldTopic, HelloWorld} the following payload: <Payload{00 01 00 00 02 00 00 00 0b 00 00 00 48 65 6c 6c 6f 57 6f 72 6c 64 00 00}>
...
Echo Participant: ParticipantId{EchoParticipant} has received from Endpoint: 01.0f.44.59.e6.de.2a.c8.01.00.00.00|0.0.1.3 in topic: Topic{HelloWorldTopic, HelloWorld} the following payload: <Payload{00 01 00 00 0a 00 00 00 0b 00 00 00 48 65 6c 6c 6f 57 6f 72 6c 64 00 00}>

1.2.2. Execute with ROS 2 demo nodes

Execute a ROS 2 demo_nodes_cpp talker in default domain 0:

ros2 run demo_nodes_cpp talker

Execute DDS Router with this configuration file (available in
<path/to/ddsrouter_tool>/share/resources/configurations/examples/echo.yaml).
The expected output from the DDS Router, printed by the Echo Participant is:

Echo Participant: ParticipantId{EchoParticipant} has received from Endpoint: 01.0f.44.59.33.e0.2b.cf.01.00.00.00|0.0.12.3 in topic: Topic{rt/chatter, std_msgs::msg::dds_::String_} the following payload: <Payload{00 01 00 00 0f 00 00 00 48 65 6c 6c 6f 20 57 6f 72 6c 64 3a 20 34 00 00}>
Echo Participant: ParticipantId{EchoParticipant} has received from Endpoint: 01.0f.44.59.33.e0.2b.cf.01.00.00.00|0.0.12.3 in topic: Topic{rt/chatter, std_msgs::msg::dds_::String_} the following payload: <Payload{00 01 00 00 0f 00 00 00 48 65 6c 6c 6f 20 57 6f 72 6c 64 3a 20 35 00 00}>
...

2. Change Domain Example

The following YAML configuration file configures a DDS Router to create two
Simple Participants, one in domain 0 and another in domain 1.

##################################
CONFIGURATION VERSION
version: v2.0 # 0

##################################
ALLOWED TOPICS
Allowing FastDDS and ROS2 HelloWorld demo examples topics

allowlist:
 - name: HelloWorldTopic # 1
 type: HelloWorld # 1
 - name: rt/chatter # 2
 type: std_msgs::msg::dds_::String_

##################################
PARTICIPANTS
participants:

##################################
SIMPLE PARTICIPANT DOMAIN 0
This participant will subscribe to topics in allowlist in domain 0 and listen every message published there

 - name: SimpleParticipant_domain0 # 3
 kind: local # 4
 domain: 0 # 5

##################################
SIMPLE PARTICIPANT DOMAIN 1
This Participant will print in stdout every message received by the other Participants

 - name: SimpleParticipant_domain1 # 6
 kind: local # 7
 domain: 1 # 8

2.1. Configuration

2.1.1. Allowed Topics

This section lists the Topics that the DDS Router will route from
one Participant to the other.
Topic HelloWorldTopic with datatype HelloWorld,
and ROS 2 topic rt/chatter with datatype std_msgs::msg::dds_::String_ will be forwarded from
one domain to the other, allowing different DDS domains to interact with each other.

allowlist:
 - name: HelloWorldTopic # 1
 type: HelloWorld # 1
 - name: rt/chatter # 2
 type: std_msgs::msg::dds_::String_

2.1.2. Simple Participant Domain 0

This Participant is configured with a name, a kind and the Domain Id, which is 0 in this case.

 - name: SimpleParticipant_domain0 # 3
 kind: local # 4
 domain: 0 # 5

2.1.3. Simple Participant Domain 1

This Participant is configured with a name, a kind and the Domain Id, which is 1 in this case.

 - name: SimpleParticipant_domain1 # 6
 kind: local # 7
 domain: 1 # 8

2.2. Execute example

Please refer to this section for a detailed explanation on how to execute the
DDS Router.

2.2.1. Execute with ROS 2 demo nodes

Execute a ROS 2 demo_nodes_cpp talker in domain 0:

ROS_DOMAIN_ID=0 ros2 run demo_nodes_cpp talker

Execute a ROS 2 demo_nodes_cpp listener in domain 1:

ROS_DOMAIN_ID=1 ros2 run demo_nodes_cpp listener

Execute DDS Router with this configuration file (available in
<path/to/ddsrouter_tool>/share/resources/configurations/examples/change_domain.yaml).
Once the DDS Router is running, messages from talker in domain 0 will be forwarded by the Router
to the listener in domain 1, that will print them in stdout.

3. ROS2 Discovery Server Example

In the following snippet we see a yaml file to configure a DDS Router to create a
Simple Participant in domain 0 and a
Local Discovery Server with ROS 2 configuration.

##################################
CONFIGURATION VERSION
version: v2.0 # 0

##################################
ALLOWED TOPICS
Allowing ROS2 HelloWorld demo_nodes topic

allowlist:
 - name: rt/chatter # 1
 type: std_msgs::msg::dds_::String_ # 1

##################################
PARTICIPANTS
participants:

##################################
SIMPLE PARTICIPANT
This participant will subscribe to topics in allowlist in domain 0 and listen every message published there

 - name: SimpleROS2 # 2
 kind: local # 3
 domain: 0 # 4

##################################
ROS DISCOVERY SERVER
This participant will subscribe to topics in allowlist using Discovery Server protocol as Server

 - name: ServerROS2 # 5
 kind: local-discovery-server # 6
 discovery-server-guid:
 ros-discovery-server: true # 7
 id: 1 # 8
 listening-addresses: # 9
 - domain: localhost # 10
 port: 11888 # 11

3.1. Configuration

3.1.1. Allowed Topics

In this section are the Topics that the DDS Router will route from
one Participant to the other.
Topic HelloWorldTopic with datatype HelloWorld,
and ROS 2 topic rt/chatter with datatype std_msgs::msg::dds_::String_ will be forwarded from
one domain to the other, allowing different DDS domains to interact to each other.

allowlist:
 - name: rt/chatter # 1
 type: std_msgs::msg::dds_::String_ # 1

3.1.2. Simple Participant

This Participant is configured by a name, a kind and the Domain Id, in this case 0.

 - name: SimpleROS2 # 2
 kind: local # 3
 domain: 0 # 4

3.1.3. Discovery Server Participant

This Participant is configured by a name, a kind and a listening addresses where
Discovery Server will expect metatraffic data from clients.

 - name: ServerROS2 # 5
 kind: local-discovery-server # 6
 discovery-server-guid:
 ros-discovery-server: true # 7
 id: 1 # 8
 listening-addresses: # 9
 - domain: localhost # 10
 port: 11888 # 11

3.2. Execute example

For a detailed explanation on how to execute the DDS Router, refer to this section.
Execute a ROS 2 demo_nodes_cpp talker in domain 0:

ROS_DOMAIN_ID=0 ros2 run demo_nodes_cpp talker

Execute a ROS 2 demo_nodes_cpp listener using Discovery Server as Discovery Protocol:

ROS_DISCOVERY_SERVER=";127.0.0.1:11888" ros2 run demo_nodes_cpp listener

Execute DDS Router with this configuration file (available in
<path/to/ddsrouter_tool>/share/resources/configurations/examples/ros_discovery_server.yaml).
Once the DDS Router is running, messages from talker in domain 0 will be forwarded by the Router
to the listener using Discovery Server, that will print them in stdout.

4. WAN Example

In the following snippet we see a yaml file to configure a DDS Router to create a
Simple Participant in domain 0 and a
WAN Participant.

##################################
CONFIGURATION VERSION
version: v2.0 # 0

##################################
ALLOWED TOPICS
Allowing FastDDS and ROS2 HelloWorld demo examples topics

allowlist:
 - name: HelloWorldTopic # 1
 type: HelloWorld # 1
 - name: rt/chatter # 2
 type: std_msgs::msg::dds_::String_

##################################
PARTICIPANTS
participants:

##################################
SIMPLE PARTICIPANT
This participant will subscribe to topics in allowlist in domain 0 and listen every message published there

 - name: SimpleParticipant # 3
 kind: local # 4
 domain: 0 # 5

##################################
WAN SERVER
This participant will subscribe to topics in allowlist using Discovery Server protocol as Server

 - name: WANServer # 6
 kind: wan # 7
 discovery-server-guid:
 id: 1 # 8
 listening-addresses: # 9
 - ip: 1.1.1.1 # 10
 port: 11666 # 11
 transport: udp # 12

4.1. Configuration

4.1.1. Allowed Topics

In this section are the Topics that the DDS Router will route from
one Participant to the other.
Topic HelloWorldTopic with datatype HelloWorld,
and ROS 2 topic rt/chatter with datatype std_msgs::msg::dds_::String_ will be forwarded from
one domain to the other, allowing different DDS domains to interact to each other.

allowlist:
 - name: HelloWorldTopic # 1
 type: HelloWorld # 1
 - name: rt/chatter # 2
 type: std_msgs::msg::dds_::String_

4.1.2. Simple Participant

This Participant is configured by a name, a kind and the Domain Id, in this case 0.

 - name: SimpleParticipant # 3
 kind: local # 4
 domain: 0 # 5

4.1.3. WAN Participant Server

This Participant is configured with a name, a kind and the listening addresses where
it will expect data from other remote WAN Participant Clients.
This Participant act as a Server only to receive the discovery data from other WAN Participants.
Once the connection has been established, the communication will be symmetrical (except in TCP case, in which case
this Participant will work as TCP Server).

 - name: WANServer # 6
 kind: wan # 7
 discovery-server-guid:
 id: 1 # 8
 listening-addresses: # 9
 - ip: 1.1.1.1 # 10
 port: 11666 # 11
 transport: udp # 12

4.1.4. WAN Participant Client

In order to create a WAN Participant Client, check the configuration file
<path/to/ddsrouter_tool>/share/resources/configurations/examples/wan_client.yaml

 - name: WANClient # 6
 kind: wan # 7
 discovery-server-guid:
 id: 2 # 8
 connection-addresses: # 9
 - discovery-server-guid:
 id: 1 # 10
 addresses: # 11
 - ip: 1.1.1.1
 port: 11666
 listening-addresses: # 12
 - ip: 2.2.2.2 # 13
 port: 11670 # 14
 transport: udp # 15

4.2. Execute example

In order to run this example, there must be two different hosts located in different local networks:

	host HA with private IP 192.168.1.2 connected to network router RA with public IP 1.1.1.1.

	host HB with private IP 192.168.2.2 connected to network router RB with public IP 2.2.2.2.

This example could be run in localhost or with two hosts in the same LAN, but it will not use the WAN
communication features of the DDS Router.

4.2.1. Host HA

This host runs the DDS Router WAN Server, which will wait for other WAN Clients to connect to it.
Execute DDS Router using file <path/to/ddsrouter_tool>/share/resources/configurations/examples/wan_server.yaml.
Remember to change the IP and port on the configuration file to the actual public IP of RA, and be sure that
the port forwarding rules are configured in RA so HA is accessible from the outside.
Check the following section for further information about how to configure
WAN in DDS Router.
Refer to this section for a detailed explanation on how to execute the DDS Router.

First of all, execute a ROS 2 demo_nodes_cpp listener in domain 0.
This listener will discover the Simple Participant in the DDS Router, but will not receive any data yet.

ROS_DOMAIN_ID=0 ros2 run demo_nodes_cpp listener

4.2.2. Host HB

This host runs the DDS Router WAN Client, which will connect to the previously launched WAN Server.
Execute DDS Router using file <path/to/ddsrouter_tool>/share/resources/configurations/examples/wan_client.yaml.
Remember to change the IPs and ports on the configuration file to the actual public IPs of RA and RB,
and be sure that port forwarding is configured in RB so HB is accessible from the outside.

In this case, the Simple Participant is configured to use the Domain Id 1,
so execute a ROS 2 demo_nodes_cpp talker in domain 1.

ROS_DOMAIN_ID=1 ros2 run demo_nodes_cpp talker

4.2.3. Result

After executing both DDS Router applications in both hosts, and talker and listener applications,
the listener in HA will start receiving and printing data from the talker in HB.
You are communicating DDS via WAN.

Remember that the Participants in every DDS Router could be configured as any Participant Kind,
allowing to use local Discovery Server, connect to several domains in the same LAN, connect to several WANs, etc.
Endless Possibilities.
Just remember uncle Ben’s words: with great power comes great responsibility.

1. ROS 2 and Kubernetes

Apart from plain LAN-to-LAN communication, Cloud environments such as container-oriented platforms have also been
present throughout the DDS Router design phase. In this walk-through example, we will set up both a Kubernetes
(K8s) network and a local environment in order to establish communication between a pair of ROS nodes, one sending
messages from a LAN (talker) and another one (listener) receiving them in the Cloud. This will be accomplished by having
a DDS Router instance at each side of the communication.

[image: ../../_images/ddsrouter_overview_wan.png]

1.1. Local setup

The local instance of DDS Router (local router) only requires to have a
Simple Participant, and a WAN Participant
that will play the client role in the discovery process of remote participants
(see Discovery Server discovery mechanism).

After having acknowledged each other’s existence through Simple DDS discovery mechanism [https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/simple.html]
(multicast communication), the local participant will start receiving messages published by the ROS 2 talker node, and
will then forward them to the WAN participant. Following, these messages will be sent to another participant hosted on a
K8s cluster to which it connects via WAN communication over UDP/IP.

Following is a representation of the above-described scenario:

[image: ../../_images/k8s_local_router.png]

1.1.1. Local router

The configuration file used by the local router will be the following:

local-ddsrouter.yaml

version: v2.0

allowlist:
 - name: rt/chatter
 type: std_msgs::msg::dds_::String_

participants:

 - name: SimpleParticipant
 kind: local
 domain: 0

 - name: LocalWAN
 kind: wan
 discovery-server-guid:
 id: 3
 listening-addresses: # Needed for UDP communication
 - ip: 3.3.3.3 # LAN public IP
 port: 30003
 transport: udp
 connection-addresses:
 - discovery-server-guid:
 id: 2
 addresses:
 - ip: 2.2.2.2 # Public IP exposed by the k8s cluster to reach the cloud DDS-Router
 port: 30002
 transport: udp

Note that the simple participant will be receiving messages sent in DDS domain 0. Also note that, due to the choice
of UDP as transport protocol, a listening address with the LAN public IP address needs to be specified for the local WAN
participant, even when behaving as client in the participant discovery process. Make sure that the given port is
reachable from outside this local network by properly configuring port forwarding in your Internet router device.
The connection address points to the remote WAN participant deployed in the K8s cluster. For further details on how to
configure WAN communication, please have a look at WAN Configuration.

Note

As an alternative, TCP transport may be used instead of UDP. This has the advantage of not requiring
to set a listening address in the local router’s WAN participant (TCP client), so there is no need to fiddle with
the configuration of your Internet router device.

To launch the local router, execute:

ddsrouter --config-path local-ddsrouter.yaml

1.1.2. Talker

This example will make use of ROS 2 galactic with demo-nodes-cpp package installed. If not already present in your
system, you may choose any of the available options to install ROS galactic [https://docs.ros.org/en/galactic/Installation.html],
or even consider directly using a distributed Docker image [https://hub.docker.com/_/ros]. Just make sure the
resulting environment is prepared to utilize eProsima Fast DDS as middleware (see Working with eProsima Fast DDS [https://docs.ros.org/en/galactic/Installation/DDS-Implementations/Working-with-eProsima-Fast-DDS.html]).

Once ROS 2 is installed, start publishing messages in DDS domain 0 by executing:

RMW_IMPLEMENTATION=rmw_fastrtps_cpp ros2 run demo_nodes_cpp talker

1.2. Kubernetes setup

Two different deployments will be used for this example, each in a different K8s pod. The DDS Router cloud instance
(cloud router) consists of two participants:

	A WAN Participant that receives the messages coming from our LAN through the
aforementioned UDP communication channel.

	A Local Discovery Server (local DS) that propagates them to a
ROS 2 listener node hosted in a different K8s pod.

The choice of a Local Discovery Server instead of a Simple Participant to communicate with the listener has to do with
the difficulty of enabling multicast routing in cloud environments.

The described scheme is represented in the following figure:

[image: ../../_images/k8s_cloud_router.png]

In addition to the two mentioned deployments, two K8s services [https://kubernetes.io/docs/concepts/services-networking/service/]
are required in order to direct dataflow to each of the pods. A LoadBalancer will forward messages reaching the cluster
to the WAN participant of the cloud router, and a ClusterIP service will be in charge of delivering messages from the
local DS to the listener pod. Following are the settings needed to launch these services in K8s:

kind: Service
apiVersion: v1
metadata:
 name: ddsrouter
 labels:
 app: ddsrouter
spec:
 ports:
 - name: UDP-30002
 protocol: UDP
 port: 30002
 targetPort: 30002
 selector:
 app: ddsrouter
 type: LoadBalancer

kind: Service
apiVersion: v1
metadata:
 name: local-ddsrouter
spec:
 ports:
 - name: UDP-30001
 protocol: UDP
 port: 30001
 targetPort: 30001
 selector:
 app: ddsrouter
 clusterIP: 192.168.1.11 # Private IP only reachable within the k8s cluster to communicate with the ddsrouter application
 type: ClusterIP

Note

An Ingress [https://kubernetes.io/docs/concepts/services-networking/ingress/] needs to be configured for the
LoadBalancer service to make it externally-reachable. In this example we consider the assigned public IP address to
be 2.2.2.2.

The configuration file used for the cloud router will be provided by setting up a ConfigMap [https://kubernetes.io/docs/concepts/configuration/configmap/]:

kind: ConfigMap
apiVersion: v1
metadata:
 name: ddsrouter-config
data:
 ddsrouter.config.file: |-
 version: v2.0

 allowlist:
 - name: rt/chatter
 type: std_msgs::msg::dds_::String_

 participants:

 - name: LocalDiscoveryServer
 kind: local-discovery-server
 discovery-server-guid:
 ros-discovery-server: true
 id: 1
 listening-addresses:
 - ip: 192.168.1.11 # Private IP only reachable within the k8s cluster to communicate with the ddsrouter application
 port: 30001
 transport: udp

 - name: CloudWAN
 kind: wan
 discovery-server-guid:
 id: 2
 listening-addresses:
 - ip: 2.2.2.2 # Public IP exposed by the k8s cluster to reach the cloud DDS-Router
 port: 30002
 transport: udp

Following is a representation of the overall K8s cluster configuration:

[image: ../../_images/k8s_diagram.png]

1.2.1. DDS-Router deployment

The cloud router is launched from within a Docker image, which uses as configuration file the one hosted in
the previously set up ConfigMap. This Docker image needs to be built and made available to the K8s cluster for using
DDS Router, which can be accomplished by providing the following
Dockerfile. If willing to see log messages in
STDOUT, use Dockerfile instead.
Assuming the name of the generated Docker image is ddsrouter:main, the cloud router will then be deployed with the
following settings:

kind: Deployment
apiVersion: apps/v1
metadata:
 name: ddsrouter
 labels:
 app: ddsrouter
spec:
 replicas: 1
 selector:
 matchLabels:
 app: ddsrouter
 template:
 metadata:
 labels:
 app: ddsrouter
 spec:
 volumes:
 - name: config
 configMap:
 name: ddsrouter-config
 items:
 - key: ddsrouter.config.file
 path: DDSROUTER_CONFIGURATION.yaml
 containers:
 - name: ddsrouter
 image: ddsrouter:main
 ports:
 - containerPort: 30001
 protocol: UDP
 - containerPort: 30002
 protocol: UDP
 volumeMounts:
 - name: config
 mountPath: /ddsrouter/resources
 restartPolicy: Always

1.2.2. Listener deployment

A suitable Docker image must also be provided in the context of the cluster in order to use ROS 2. We will use
ros:galactic as basis for this image, install demo-nodes-cpp, and include a parser that will allow us to specify
the port and IP address of the local DS. This can be achieved by using the following Dockerfile and entrypoint:

FROM ros:galactic

SHELL ["/bin/bash", "-c"]

Install demo-nodes-cpp
RUN source /opt/ros/$ROS_DISTRO/setup.bash && \
 apt update && \
 apt install -y ros-$ROS_DISTRO-rmw-fastrtps-cpp && \
 apt install -y ros-$ROS_DISTRO-demo-nodes-cpp

Set Fast DDS as middleware
ENV RMW_IMPLEMENTATION=rmw_fastrtps_cpp

COPY ./run.bash /
RUN chmod +x /run.bash

Setup entrypoint
ENTRYPOINT ["/run.bash"]

#!/bin/bash

if [[$1 == "listener"]]
then
 NODE="listener"
else
 NODE="talker"
fi

SERVER_IP=$2
SERVER_PORT=$3

Setup environment
source "/opt/ros/$ROS_DISTRO/setup.bash"

echo "Starting ${NODE} as client of Discovery Server ${SERVER_IP}:${SERVER_PORT}"
ROS_DISCOVERY_SERVER=";${SERVER_IP}:${SERVER_PORT}" ros2 run demo_nodes_cpp ${NODE}

Now, assuming the name of the built image is ros2-demo-nodes:galactic, the listener pod can be deployed by providing
the following configuration:

kind: Deployment
apiVersion: apps/v1
metadata:
 name: ros2-galactic-listener
 labels:
 app: ros2-galactic-listener
spec:
 replicas: 1
 selector:
 matchLabels:
 app: ros2-galactic-listener
 template:
 metadata:
 labels:
 app: ros2-galactic-listener
 spec:
 containers:
 - name: ros2-demo-nodes
 image: ros2-demo-nodes:galactic
 args:
 - listener
 - 192.168.1.11
 - '30001'
 restartPolicy: Always

Once all these components are up and running, communication should have been established between talker and listener
nodes, so that messages finally manage to reach the listener pod and get printed in its STDOUT.

Feel free to interchange the locations of the ROS nodes by slightly modifying the provided configuration files, hosting
the talker in the K8s cluster while the listener runs in our LAN.

1. Linux installation from sources

The instructions for installing the DDS Router application from sources and its required
dependencies are provided in this page.
It is organized as follows:

	Dependencies installation

	Requirements

	Dependencies

	Colcon installation

	CMake installation

	Local installation

	Global installation

	Run an application

1.1. Dependencies installation

DDS Router depends on eProsima Fast DDS library and certain Debian packages.
This section describes the instructions for installing DDS Router dependencies and requirements in a Linux
environment from sources.
The following packages will be installed:

	foonathan_memory_vendor, an STL compatible C++ memory allocation library.

	fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

	fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and Dependencies detailed below need to be
met.
Afterwards, the user can choose whether to follow either the colcon or the
CMake installation instructions.

1.1.1. Requirements

The installation of DDS Router in a Linux environment from sources requires the following tools to be
installed in the system:

	CMake, g++, pip, wget and git

	Colcon [optional]

	Gtest [for test only]

1.1.1.1. CMake, g++, pip, wget and git

These packages provide the tools required to install DDS Router and its dependencies from command line.
Install CMake [https://cmake.org], g++ [https://gcc.gnu.org/], pip [https://pypi.org/project/pip/], wget [https://www.gnu.org/software/wget/] and git [https://git-scm.com/] using the package manager of the appropriate
Linux distribution. For example, on Ubuntu use the command:

sudo apt install cmake g++ pip wget git

1.1.1.2. Colcon

colcon [https://colcon.readthedocs.io/en/released/] is a command line tool based on CMake [https://cmake.org] aimed at building sets of software packages.
Install the ROS 2 development tools (colcon [https://colcon.readthedocs.io/en/released/] and vcstool [https://pypi.org/project/vcstool/]) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note

If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

1.1.1.3. Gtest

Gtest [https://github.com/google/googletest] is a unit testing library for C++.
By default, DDS Router does not compile tests.
It is possible to activate them with the opportune
CMake options [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-options]
when calling colcon [https://colcon.readthedocs.io/en/released/] or CMake [https://cmake.org].
For more details, please refer to the CMake options section.
For a detailed description of the Gtest [https://github.com/google/googletest] installation process, please refer to the
Gtest Installation Guide [https://github.com/google/googletest].

It is also possible to clone the Gtest [https://github.com/google/googletest] Github repository into the DDS Router workspace and compile it with colcon [https://colcon.readthedocs.io/en/released/]
as a dependency package.
Use the following command to download the code:

git clone --branch release-1.10.0 https://github.com/google/googletest src/googletest-distribution

1.1.2. Dependencies

DDS Router has the following dependencies, when installed from sources in a Linux environment:

	Asio and TinyXML2 libraries

	OpenSSL

	yaml-cpp

	eProsima dependencies

1.1.2.1. Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent
asynchronous model.
TinyXML2 is a simple, small and efficient C++ XML parser.
Install these libraries using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

1.1.2.2. OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library.
Install OpenSSL [https://www.openssl.org/] using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libssl-dev

1.1.2.3. yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Router application to
parse the provided configuration files.
Install yaml-cpp using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libyaml-cpp-dev

1.1.2.4. eProsima dependencies

If it already exists in the system an installation of Fast DDS library with version greater than 2.4.0, just source
this library when building the DDS Router application by using the command:

source <fastdds-installation-path>/install/setup.bash

In other case, just download Fast DDS project from sources and build it together with DDS Router using colcon
as it is explained in section Colcon installation.

1.2. Colcon installation

	Create a DDS-Router directory and download the .repos file that will be used to install
DDS Router and its dependencies:

mkdir -p ~/DDS-Router/src
cd ~/DDS-Router
wget https://raw.githubusercontent.com/eProsima/DDS-Router/main/ddsrouter.repos
vcs import src < ddsrouter.repos

Note

In case there is already a Fast DDS installation in the system it is not required to download and build
every dependency in the .repos file.
It is just needed to download and build the DDS Router project having sourced its dependencies.
Refer to section eProsima dependencies in order to check how to source Fast DDS library.

	Build the packages:

colcon build

Note

Being based on CMake [https://cmake.org], it is possible to pass the CMake configuration options to the colcon build
command. For more information on the specific syntax, please refer to the
CMake specific arguments [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments]
page of the colcon [https://colcon.readthedocs.io/en/released/] manual.

1.3. CMake installation

This section explains how to compile DDS Router with CMake [https://cmake.org], either
locally or globally.

1.3.1. Local installation

	Create a DDS-Router directory where to download and build DDS Router and its dependencies:

mkdir ~/DDS-Router

	Clone the following dependencies and compile them using CMake [https://cmake.org].

	Foonathan memory [https://github.com/foonathan/memory]

cd ~/DDS-Router
git clone https://github.com/eProsima/foonathan_memory_vendor.git
mkdir foonathan_memory_vendor/build
cd foonathan_memory_vendor/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/DDS-Router/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install

	Fast CDR [https://github.com/eProsima/Fast-CDR.git]

cd ~/DDS-Router
git clone https://github.com/eProsima/Fast-CDR.git
mkdir Fast-CDR/build
cd Fast-CDR/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/DDS-Router/install
cmake --build . --target install

	Fast DDS [https://github.com/eProsima/Fast-DDS.git]

cd ~/DDS-Router
git clone https://github.com/eProsima/Fast-DDS.git
mkdir Fast-DDS/build
cd Fast-DDS/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/DDS-Router/install -DCMAKE_PREFIX_PATH=~/DDS-Router/install
cmake --build . --target install

	Once all dependencies are installed, install DDS Router:

cd ~/DDS-Router
git clone https://github.com/eProsima/DDS-Router.git
mkdir DDS-Router/build
cd DDS-Router/build
cmake .. -DCMAKE_INSTALL_PREFIX=~/DDS-Router/install -DCMAKE_PREFIX_PATH=~/DDS-Router/install
cmake --build . --target install

Note

By default, DDS Router does not compile tests.
However, they can be activated by downloading and installing Gtest [https://github.com/google/googletest]
and building with CMake option -DBUILD_TESTS=ON.

1.3.2. Global installation

To install DDS Router system-wide instead of locally, remove all the flags that
appear in the configuration steps of Fast-CDR, Fast-DDS, and
DDS-Router, and change the first in the configuration step of foonathan_memory_vendor to the
following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

1.4. Run an application

To run the DDS Router application, source the Fast DDS library
and execute the executable file that has been installed in <install-path>/ddsrouter/bin/ddsrouter:

If built has been done using colcon, all projects could be sourced as follows
source install/setup.bash
./<install-path>/ddsrouter/bin/ddsrouter

Be sure that this executable has execute permissions.

2. Windows installation from sources

The instructions for installing the DDS Router application from sources and its required
dependencies are provided in this page.
It is organized as follows:

	Dependencies installation

	Requirements

	Dependencies

	Colcon installation

	CMake installation

	Local installation

	Global installation

	Run an application

2.1. Dependencies installation

DDS Router depends on eProsima Fast DDS library and certain Debian packages.
This section describes the instructions for installing DDS Router dependencies and requirements in a Windows
environment from sources.
The following packages will be installed:

	foonathan_memory_vendor, an STL compatible C++ memory allocation library.

	fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

	fastrtps, the core library of eProsima Fast DDS library.

First of all, the Requirements and
Dependencies detailed below need to be met.
Afterwards, the user can choose whether to follow either the colcon or the
CMake installation instructions.

2.1.1. Requirements

The installation of eProsima Fast DDS in a Windows environment from sources requires the following tools to be
installed in the system:

	Visual Studio

	Chocolatey

	CMake, pip3, wget and git

	Colcon [optional]

	Gtest [for test only]

2.1.1.1. Visual Studio

Visual Studio [https://visualstudio.microsoft.com/] is required to
have a C++ compiler in the system. For this purpose, make sure to check the
Desktop development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not,
open Visual Studio and go to Tools -> Get Tools and Features and in the Workloads tab enable
Desktop development with C++. Finally, click Modify at the bottom right.

2.1.1.2. Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies.
Download and install it directly from the website [https://chocolatey.org/].

2.1.1.3. CMake, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Download and install CMake [https://cmake.org], pip3 [https://docs.python.org/3/installing/index.html], wget [https://www.gnu.org/software/wget/] and git [https://git-scm.com/] by following the instructions detailed in the respective
websites.
Once installed, add the path to the executables to the PATH from the
Edit the system environment variables control panel.

2.1.1.4. Colcon

colcon [https://colcon.readthedocs.io/en/released/] is a command line tool based on CMake [https://cmake.org] aimed at building sets of software packages.
Install the ROS 2 development tools (colcon [https://colcon.readthedocs.io/en/released/] and vcstool [https://pypi.org/project/vcstool/]) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note

If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

2.1.1.5. Gtest

Gtest is a unit testing library for C++.
By default, DDS Router does not compile tests.
It is possible to activate them with the opportune
CMake options [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-options]
when calling colcon [https://colcon.readthedocs.io/en/released/] or CMake [https://cmake.org].
For more details, please refer to the CMake options section.

Run the following commands on your workspace to install Gtest.

git clone https://github.com/google/googletest.git
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\gtest' -Dgtest_force_shared_crt=ON -DBUILD_GMOCK=ON ^
 -B build\gtest -A x64 -T host=x64 googletest
cmake --build build\gtest --config Release --target install

or refer to the
Gtest Installation Guide [https://github.com/google/googletest] for a detailed description of the Gtest installation
process.

2.1.2. Dependencies

DDS Router has the following dependencies, when installed from sources in a Windows environment:

	Asio and TinyXML2 libraries

	OpenSSL

	yaml-cpp

	eProsima dependencies

2.1.2.1. Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent
asynchronous model.
TinyXML2 is a simple, small and efficient C++ XML parser.
They can be downloaded directly from the links below:

	Asio [https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg]

	TinyXML2 [https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg]

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

2.1.2.2. OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library.
Download and install the latest OpenSSL version for Windows at this
link [https://slproweb.com/products/Win32OpenSSL.html].
After installing, add the environment variable OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

2.1.2.3. yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Router application to
parse the provided configuration files.
From an administrative shell with PowerShell, execute the following commands in order to download and install yaml-cpp
for Windows:

git clone --branch yaml-cpp-0.7.0 https://github.com/jbeder/yaml-cpp
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\yamlcpp' -B build\yamlcpp yaml-cpp
cmake --build build\yamlcpp --target install # If building in Debug mode, add --config Debug

2.1.2.4. eProsima dependencies

If it already exists in the system an installation of Fast DDS library with version greater than 2.4.0, just source
this library when building the DDS Router application by using the command:

source <fastdds-installation-path>/install/setup.bash

In other case, just download Fast DDS project from sources and build it together with DDS Router using colcon
as it is explained in section Colcon installation.

2.2. Colcon installation

Important

Run colcon within a Visual Studio prompt. To do so, launch a Developer Command Prompt from the
search engine.

	Create a DDS-Router directory and download the .repos file that will be used to install
DDS Router and its dependencies:

mkdir <path\to\user\workspace>\DDS-Router
cd <path\to\user\workspace>\DDS-Router
mkdir src
wget https://raw.githubusercontent.com/eProsima/DDS-Router/main/ddsrouter.repos
vcs import src < ddsrouter.repos

Note

In case there is already a Fast DDS installation in the system it is not required to download and build
every dependency in the .repos file.
It is just needed to download and build the DDS Router project having sourced its dependencies.
Refer to section eProsima dependencies in order to check how to source Fast DDS library.

	Build the packages:

colcon build

Note

Being based on CMake [https://cmake.org], it is possible to pass the CMake configuration options to the colcon build
command. For more information on the specific syntax, please refer to the
CMake specific arguments [https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments]
page of the colcon [https://colcon.readthedocs.io/en/released/] manual.

2.3. CMake installation

This section explains how to compile DDS Router with CMake [https://cmake.org], either
locally or globally.

2.3.1. Local installation

	Open a command prompt, and create a DDS-Router directory where to download and build DDS Router and
its dependencies:

mkdir <path\to\user\workspace>\DDS-Router

	Clone the following dependencies and compile them using CMake [https://cmake.org].

	Foonathan memory [https://github.com/foonathan/memory]

cd <path\to\user\workspace>\DDS-Router
git clone https://github.com/eProsima/foonathan_memory_vendor.git
cd foonathan_memory_vendor
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install ^
 -DBUILD_SHARED_LIBS=ON
cmake --build . --config Release --target install

	Fast CDR [https://github.com/eProsima/Fast-CDR.git]

cd <path\to\user\workspace>\DDS-Router
git clone https://github.com/eProsima/Fast-CDR.git
cd Fast-CDR
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

	Fast DDS [https://github.com/eProsima/Fast-DDS.git]

cd <path\to\user\workspace>\DDS-Router
git clone https://github.com/eProsima/Fast-DDS.git
cd Fast-DDS
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install ^
 -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

	Once all dependencies are installed, install DDS Router:

cd <path\to\user\workspace>\DDS-Router
git clone https://github.com/eProsima/DDS-Router.git
cd DDS-Router
mkdir build
cd build
cmake .. -DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install ^
 -DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

Note

By default, DDS Router does not compile tests.
However, they can be activated by downloading and installing Gtest [https://github.com/google/googletest]
and building with CMake option -DBUILD_TESTS=ON.

2.3.2. Global installation

To install DDS Router system-wide instead of locally, remove all the flags that
appear in the configuration steps of foonathan_memory_vendor, Fast-CDR, Fast-DDS, and
DDS-Router

2.4. Run an application

If the DDS Router was compiled using colcon, when running an instance of a DDS Router, the colcon overlay built in the
dedicated DDS-Router directory must be sourced.
There are two possibilities:

	Every time a new shell is opened, prepare the environment locally by typing the
command:

setup.bat

	Add the sourcing of the colcon overlay permanently, by opening the
Edit the system environment variables control panel, and adding ~/Fast-DDS/install/setup.bat
to the PATH.

However, when running an instance of a DDS Router compiled using CMake, it must be linked with its dependencies where
the packages have been installed. This can be done by opening the Edit system environment variables control panel and
adding to the PATH the DDS Router, Fast DDS and Fast CDR installation directories:

	Fast DDS: C:\Program Files\fastrtps

	Fast CDR: C:\Program Files\fastcdr

	DDS Router: C:\Program Files\ddsrouter

3. CMake options

eProsima DDS Router provides numerous CMake options for changing the behavior and configuration of
DDS Router.
These options allow the developer to enable/disable certain DDS Router settings by defining these options to
ON/OFF at the CMake execution, or set the required path to certain dependencies.

Warning

These options are only for developers who installed eProsima DDS Router following the compilation steps
described in Linux installation from sources.

	Option

	Description

	Possible values

	Default

	CMAKE_BUILD_TYPE

	CMake optimization build type.

	Release

Debug

	Release

	COMPILE_TOOLS

	Build the DDS Router application tool ddsrouter.

	OFF

ON

	ON

	BUILD_TESTS

	Build the DDS Router application and documentation

tests. Setting BUILD_TESTS to ON sets

BUILD_APP_TESTS and BUILD_DOCUMENTATION_TESTS

to ON.

	OFF

ON

	OFF

	BUILD_APP_TESTS

	Build the DDS Router application tests. It is

set to ON if BUILD_TESTS is set to ON.

	OFF

ON

	OFF

	BUILD_DOCUMENTATION_TESTS

	Build the DDS Router documentation tests. It is

set to ON if BUILD_TESTS is set to ON.

	OFF

ON

	OFF

	LOG_INFO

	Activate DDS Router execution logs. It is

set to ON if CMAKE_BUILD_TYPE is set

to Debug.

	OFF

ON

	ON if Debug

OFF otherwise

Version v0.3.0

This release includes the following major changes:

	New DDS Router library that provides the DDS Router features through a C++ API.

	Division of DDS Router application into several packages.

	ddsrouter_event: C++ library which implements System Operating (SO)-dependent signal handlers.

	ddsrouter_utils: C++ library which implements various utility functions.

	ddsrouter_core: C++ library which implements the DDS Router operation and exports the DDS Router C++ API.

	ddsrouter_yaml: C++ library to parse the DDS Router yaml configuration files.

	ddsrouter_tool: DDS Router end-user application.

	New dynamic topic discovery feature to automatically discover DDS Topics in a DDS network.

	Allow using wildcard characters to define topics in allowlist and blocklist.

	Build internal topic tracks via the builtin-topics configuration.

This release includes the following Routing features:

	Apply DDS Topic filtering rules using the allowlist and blocklist lists.

This release includes the following User Interface features:

	Upgrade the yaml configuration file to version 2.0 which breaks compatibility with version 1.0.

	Support for both version 1.0 and version 2.0 of the yaml configuration file, maintaining version 1.0 by default.

	Improve reporting of errors resulting from parsing a malformed yaml configuration file.

This release includes the following Continuous-Integration features:

	Add tests for the yaml parsing library (ddsrouter_yaml).

	Specific testing GitHub actions for each DDS Router package for both Windows and Linux platforms.

This release fixes the following major bugs:

	Fix deadlock between Track and Fast DDS Reader mutex.

	Support any size for in and out messages.

This release fixes the following minor bugs:

	Fix parsing of reload-time executable argument.

	Handle signals in dedicated threads to prevent hangs when terminating execution.

	Fix rare deadlock in EventHandler when destroying and callback called.

This release includes the following Documentation features:

	DDS Router execution from a provided Docker image.

	Update all examples of yaml configuration files to be consistent with the new yaml configuration version.

	High-level repository structure description and developer contribution guidelines.

	Improved and extended Topic Filtering section according to the new dynamic topic discovery functionality.

Previous Versions

Version v0.2.0

This release includes the following Configuration features:

	Support TLS over TCP configuration and communication.

	Support IPv6 communication via UDP, TCP and TLS over TCP.

	Support DNS by given Domain Name in configuration instead of an IP address.

	Support keyed topics.

This release includes the following Routing features:

	Zero-Copy data transmission between internal Participants.

This release includes the following User Interface features:

	Shutdown the DDS Router application gracefully sending SIGTERM (kill) or SIGINT (^C) signals.

This release includes the following Continuous-Integration features:

	Add communication tests for UDP, TCP and TLS over TCP WAN cases.

	Extend tool test with more complex configurations.

	Remove Flaky tests from CI required passing tests.

	Implement a new class to check that no warning or error logs are produced during test executions.

	Add gMock to test libraries.

This release fixes the following major bugs:

	Fix GUID creation when explicit guid is provided.

	Show error when participant ids are duplicated.

This release fixes the following minor bugs:

	Change YAML example configurations to YAML format (instead of JSON) fixing
an issue when blank lines were missing at the end of the file.

	Normalize the error and process exit when failure.

	Fix documentation typos.

Version v0.1.0

This is the first release of eProsima DDS Router.

This release includes several features regarding the routing of DDS data, the DDS Router configuration,
the user interaction
with the DDS Router, and the different DDS configurations that the application is able to reproduce.

This release includes the following User Interface features:

	Application executable.

	Application executable arguments.

	Signal handler to close the application.

	FileWatcher thread to watch and reload the configuration file.

	Periodic timer to force reload configuration.

	Application run-time user logs.

	Application run-time debug logs.

	Error handling:

	Error log and exit program when reading configuration fails.

	Error log and exit program when initializing Participants fails.

	Error log and continuing execution when execution error occurs.

This release includes the following Configuration features:

	Allow to execute the application with a YAML configuration file.

	Support for initial topics in allowlist.

	Support for block topic filters.

	Different Participant configurations:

	Domain Id.

	Discovery Server GuidPrefix.

	Listening addresses.

	Connection addresses.

This release includes the following Routing features:

	Support for routing Topics specified in allowlist regarding Topic name and Topic Type name.

	Support for connecting to new Topics in run-time (by reloading configuration).

	Support for disabling a Topic in run-time.

	Support for enabling a Topic that has been disabled in run-time.

	Route messages of each Participant to all the other Participants.

	Agnostic to topic data types.

This release includes the following DDS features:

	Allow UDP, TCP and SHM transport communication.

	Allow dynamic discovery of new entities.

	Using eProsima Fast DDS RTPS layer for discovery, publication and subscription.

This release includes the following Participant features:

	Echo Participant.

	Simple Participant, able to connect to a Simple Discovery UDP DDS network.

	Local Discovery Server Participant, able to connect to a local Discovery Server as Client or Server.

	WAN Participant, able to connect to a WAN Discovery Server network as Client or Server.

This release includes the following Examples:

	Echo Example, to monitor a local simple network.

	Domain Change Example, to connect two different domains.

	ROS 2 Discovery Server Example, to connect a regular DDS network with a Discovery Server network using
ROS 2 configuration.

	WAN Example, to connect two DDS networks in different LANs.

This release includes the following Documentation features:

	This same documentation.

Glossary

	LAN
	Local Area Network

	NAT
	Network Address Translation:
Typically an internet router multiplexes all the traffic through
a public IP to several private IPs.
Usually, the machines under the router network cannot be accessed from the outside unless a Port is forwarded
in the router configuration, or if such host has previously started a TCP communication with the message source.

	TCP
	Transmission Control Protocol

	UDP
	User Datagram Protocol

	WAN
	Wide Area Network

Index

 D
 | E
 | G
 | L
 | N
 | P
 | T
 | U
 | W

D

 	
 	DataReader

 	DataWriter

 	
 	Discovery Server

 	Domain Id

 	DomainParticipant

E

 	
 	Endpoint

G

 	
 	Guid

 	
 	GuidPrefix

L

 	
 	LAN

N

 	
 	NAT

P

 	
 	Participant

 	Participant Kind

 	
 	Participant Name

 	Payload

T

 	
 	TCP

 	
 	Topic

U

 	
 	UDP

W

 	
 	WAN

Forthcoming Version

Version v0.1.0

This is the first release of eProsima DDS Router.

This release includes several features regarding the routing of DDS data, the DDS Router configuration,
the user interaction
with the DDS Router, and the different DDS configurations that the application is able to reproduce.

This release includes the following User Interface features:

	Application executable.

	Application executable arguments.

	Signal handler to close the application.

	FileWatcher thread to watch and reload the configuration file.

	Periodic timer to force reload configuration.

	Application run-time user logs.

	Application run-time debug logs.

	Error handling:

	Error log and exit program when reading configuration fails.

	Error log and exit program when initializing Participants fails.

	Error log and continuing execution when execution error occurs.

This release includes the following Configuration features:

	Allow to execute the application with a YAML configuration file.

	Support for initial topics in allowlist.

	Support for block topic filters.

	Different Participant configurations:

	Domain Id.

	Discovery Server GuidPrefix.

	Listening addresses.

	Connection addresses.

This release includes the following Routing features:

	Support for routing Topics specified in allowlist regarding Topic name and Topic Type name.

	Support for connecting to new Topics in run-time (by reloading configuration).

	Support for disabling a Topic in run-time.

	Support for enabling a Topic that has been disabled in run-time.

	Route messages of each Participant to all the other Participants.

	Agnostic to topic data types.

This release includes the following DDS features:

	Allow UDP, TCP and SHM transport communication.

	Allow dynamic discovery of new entities.

	Using eProsima Fast DDS RTPS layer for discovery, publication and subscription.

This release includes the following Participant features:

	Echo Participant.

	Simple Participant, able to connect to a Simple Discovery UDP DDS network.

	Local Discovery Server Participant, able to connect to a local Discovery Server as Client or Server.

	WAN Participant, able to connect to a WAN Discovery Server network as Client or Server.

This release includes the following Examples:

	Echo Example, to monitor a local simple network.

	Domain Change Example, to connect two different domains.

	ROS 2 Discovery Server Example, to connect a regular DDS network with a Discovery Server network using
ROS 2 configuration.

	WAN Example, to connect two DDS networks in different LANs.

This release includes the following Documentation features:

	This same documentation.

Version v0.2.0

This release includes the following Configuration features:

	Support TLS over TCP configuration and communication.

	Support IPv6 communication via UDP, TCP and TLS over TCP.

	Support DNS by given Domain Name in configuration instead of an IP address.

	Support keyed topics.

This release includes the following Routing features:

	Zero-Copy data transmission between internal Participants.

This release includes the following User Interface features:

	Shutdown the DDS Router application gracefully sending SIGTERM (kill) or SIGINT (^C) signals.

This release includes the following Continuous-Integration features:

	Add communication tests for UDP, TCP and TLS over TCP WAN cases.

	Extend tool test with more complex configurations.

	Remove Flaky tests from CI required passing tests.

	Implement a new class to check that no warning or error logs are produced during test executions.

	Add gMock to test libraries.

This release fixes the following major bugs:

	Fix GUID creation when explicit guid is provided.

	Show error when participant ids are duplicated.

This release fixes the following minor bugs:

	Change YAML example configurations to YAML format (instead of JSON) fixing
an issue when blank lines were missing at the end of the file.

	Normalize the error and process exit when failure.

	Fix documentation typos.

 _images/shapesdemo_publisher.png
Shapes Demo

Control Options Help

Publish

$ EPRosI I

“The Middleware Expl

Subscribe.

Endpoints | Output

Topic Color size Type Reliable History Partitions Ownership |
1/Square RED 30 Pub True 1 - SHARED
2[Triangle YELLOW 30 Pub True 1 - SHARED

3/circle BLUE 30 Pub True 1 - SHARED |-

_images/shapesdemo_square.png
Shapes Demo g juanlofer@eprosima-XPS-15-7590: ~/ddsrouter)} Shapes Demo

Control Opti Helj i
SR RIS GED i~ /ddsrouter$ source install/setup.bash il @pitme [

:~/ddsrouters ddsrouter -c client-ddsrouter.yanl
Starting DDS Router execution.
Starting DDS Router.

S EPI‘SMA S EPROSIMA
[|

Subscribe Subscribe
Juanlofer@eprosima-XPs-15-7590: ~/ddsrouter Q. - o @

:~/ddsrouters source install/setup.bash
:~/ddsrouters ddsrouter -c server-ddsrouter.yanl
Starting DDS Router execution.
Endpoints | Output Starting DDS Router. Endpoints | Output

Topic | Color . Ty Relisble] [] Topic . Reliable
1/square RED Pub True 1/square False
2| Tiangle veLLOW Pub True 2| Tiangle False

3/circle BLUE Pub True 3 False

_images/shapesdemo_detailed.png
DDS NETWORK(

eProsima DDS Routerg Allowed topics

- Topic name: Square
- Topic data type: ShapeType

Fast DDS Reader =™ Fast DDS Writer

- Topic name: <auto>
- Topic data type: <auto>

- Topic name: <auto>
- Topic data type: <auto>

Fast DDS Writer

- Topic name: <auto>
- Topic data type: <auto>

Fast DDS Reader

- Topic name: <auto>
- Topic data type: <auto>

“Shapes

UDP Channel

DDS NETWORKj

eProsima DDS Router

Fast DDS Reader =

- Topic name: <auto>
- Topic data type: <auto>

Fast DDS Writer

- Topic name: <auto>
- Topic data type: <auto>

Allowed topics

- Topic name: Square
- Topic data type: ShapeType

Fast DDS Writer

- Topic name: <auto>
- Topic data type: <auto>

Fast DDS Reader

- Topic name: <auto>
- Topic data type: <auto>

“Shapes

_images/shapesdemo_general.png
DDS NETWORK(

Sapes e

)

DDS NETWORK{

Rl Shapes Demo

_

_static/file.png

_images/shapesdemo_subscriber.png
Shapes Demo

Control Options Help

Publish

Subscribe.

Endpoints | Output

Topic Color size.

1square — -
2[Triangle — -

scide - -

X3

EPROSIMA

The Middleware Experts

Type
sub

sub

sub

Relisble | History Partitions
False 6 -
False 6 -
False 5 -

Ownership |~

SHARED

SHARED

SHARED

_static/minus.png

_static/plus.png

_images/k8s_local_router.png
4 LAN;)

eProsima DDS Router Allowed topics

- Topic name: rt/chatter
- Topic data type: String_

UDP Channel

Fast DDS Reader : Fast DDS Writer

- Topic name: <auto> - Topic name: <auto>
- Topic data type: <auto> - Topic data type: <auto>

Fast DDS Writer Fast DDS Reader

- Topic name: <auto> - Topic name: <auto>
- Topic data type: <auto> - Topic data type: <auto>

_images/logo.png

_images/k8s_cloud_router.png
UDP Channel

DDS-ROUTER POD)

eProsima DDS Router Allowed topics

Fast DDS Reader

- Topic name: <auto>
- Topic data type: <auto>

Fast DDS Writer

- Topic name: <auto>
- Topic data type: <auto>

- Topic name: rt/chatter
- Topic data type: String_

" LISTENERPOD)

Fast DDS Writer

- Topic name: <auto>
- Topic data type: <auto>

Fast DDS Reader

- Topic name: <auto>
- Topic data type: <auto>

_images/k8s_diagram.png
DDS-Router Deployment

DDS-Router Service Local DDS-Router Service ROS 2 Listener Deployment

DDS-Router Pod

- External Load Balancer: - Cluster-IP: Listener Pod
>
o channe! 2222 - Services: 192.168.1.11
PP - ddsrouter (external) _ _ - Discovery Server address:
- Service port mapping: - local-ddsrouter (internal) - Service port mapping: 192.168.1.11:30001

30002/UDP - Config Map: ddsrouter-config 30001/UDP

- Application: DDS-Router - Application: DDS-Router

Discovery Traffic

User Data Traffic

_images/shapesdemo_circle.png
Shapes Demo M Jjuanlofer@eprosima-XPs-15-7590: ~/ddsrouter 2 Shapes Demo

Control Options Help s source install/setup.bash Control Options Help
: $ ddsrouter -c client-ddsrouter.yaml

Starting DDS Router execution.
Starting DDS Router.
FileWatcher event raised. Reloading configuration.
FileWatcher event raised. Reloading configuration.

EPROSIMA EPROSIMA

The Middl The Middleware Experts

Subscribe Subscribe

Jjuanlofer@eprosima-XPs-15-7590: ~/ddsrouter Q - o ®

$ source install/setup.bash
$ ddsrouter -c server-ddsrouter.yanl
Starting DDS Router execution.
Endpoints | Output Starting DDS Router. Endpoints | Output
FileWatcher event raised. Reloading configuration. Topic | Color Reliable

FileWatcher event raised. Reloading configuration.
1Square RED True 1 1 square

Topic Color Reliable
False

2 Triangle YELLOW True 2 Triangle False

3 Circle: BLUE True 3/ circle False

nav.xhtml

 Table of Contents

 		
 Overview

_images/ddsrouter_overview.png
eProsima DDS Router

Participant Participant,
- Multicast Discovery - Multicast Discovery
- UDP Transport - TCP Transport

iai iai - Domain 0 - Domain 11

il

[-o

-
.—E

_ Participants

- Discovery Server Client
- UDP Transport

- Discovery Server Client
- TCP Transport

_images/ddsrouter_overview_wan.png

Cloud
Server

eProsima DDS Router

“ WAN Participant
Custom Participants

eProsima DDS Router

WAN Participant “

o e

Private
LAN

CODESHIP
kubernetes

_ Np
ffifamazon

AF webservices

-~ - -

e mm e m—m = ——— -

N e oo

_images/ddsrouter_cloud.png
External network

Trusted network
10.0.1.0/24

DDS Router

% external connection adar:
74 123.123.123.123
[]
DDS Gilobal Data Space
[]

o L

jl

N
v/

Cloud Server
Public IP: 123.123.123.123

CODESHIP
kubernetes -l- DDS Router
1]

listening addr: 123.123.123.123
iIsFamazon

BF webservices

- mm

_static/css/imgs/logo.png

