
DDS Router Documentation
Release ..

eProsima

Apr 11, 2023

INTRODUCTION

1 Contacts and Commercial support 3

2 Contributing to the documentation 5

3 Structure of the documentation 7
3.1 Overview . 7
3.2 Contacts and Commercial support . 8
3.3 Contributing to the documentation . 8
3.4 Structure of the documentation . 9
3.5 DDS Router on Windows . 9
3.6 DDS Router on Linux . 9
3.7 Docker image . 9
3.8 Project Overview . 10
3.9 Example of usage . 12
3.10 User Interface . 17
3.11 DDS Router Participant . 21
3.12 DDS Router Configuration . 29
3.13 WAN Configuration . 39
3.14 YAML Validator . 43
3.15 Nomenclature . 44
3.16 Echo Example . 45
3.17 Change Domain Example . 48
3.18 ROS2 Discovery Server Example . 50
3.19 WAN Example . 52
3.20 Repeater Example . 55
3.21 WAN communication over TCP . 57
3.22 ROS 2 and Kubernetes . 63
3.23 Repeater DDS Router . 70
3.24 Linux installation from sources . 71
3.25 Windows installation from sources . 77
3.26 CMake options . 84
3.27 Version v1.2.0 . 84
3.28 Previous Versions . 85
3.29 Glossary . 89

Index 91

i

ii

DDS Router Documentation, Release ..

eProsima DDS Router is an end-user software application that enables the connection of distributed DDS networks.
That is, DDS entities such as publishers and subscribers deployed in one geographic location and using a dedicated
local network will be able to communicate with other DDS entities deployed in different geographic areas on their own
dedicated local networks as if they were all on the same network through the use of eProsima DDS Router. This is
achieved by deploying a DDS Router on an edge device of each local network so that the DDS Router routes DDS
traffic from one network to the other through WAN communication.

Furthermore, DDS Router is a software designed for various forms of distributed networks, such as mesh networks in
which nodes are deployed in different private local networks that are auto-discovered without any centralized network
node, or cloud-based networks where there is a data processing cloud and multiple geographically distributed edge
devices.

Following are some of the key features of eProsima DDS Router:

1. WAN communication over TCP: it supports WAN over TCP communication to establish DDS communications
over the Internet.

2. Distributed nature: the user may deploy intermediate DDS Router nodes to discover new entities that enter and
leave the network dynamically.

3. Efficient data routing: DDS Router avoids data introspection achieving a zero-copy system in data forwarding.

4. Easy deployment: it is based on an easily configurable modular system for users with no knowledge of computer
networks.

5. Topic allowlisting: it is possible to configure a DDS Router to forward just the user data belonging to a topic
specified by the user.

6. Dynamic topic discovery: the user does not need to fully specify over which topics to communicate (i.e. provide
concrete topic names and types). The discovery of topics matching the allowlisting rules automatically triggers
the creation of all entities required for communication.

7. Quality of Service preservation: DDS Router uses the QoS set in the user’s DDS network and keeps the relia-
bility and durability of the communication for each topic. These QoS are also manually configurable.

INTRODUCTION 1

http://www.eprosima.com/

DDS Router Documentation, Release ..

2 INTRODUCTION

CHAPTER

ONE

CONTACTS AND COMMERCIAL SUPPORT

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

3

https://eprosima.com/
mailto:support@eprosima.com

DDS Router Documentation, Release ..

4 Chapter 1. Contacts and Commercial support

CHAPTER

TWO

CONTRIBUTING TO THE DOCUMENTATION

DDS Router Documentation is an open source project, and as such all contributions, both in the form of feedback and
content generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted
in our GitHub repository.

5

https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

DDS Router Documentation, Release ..

6 Chapter 2. Contributing to the documentation

CHAPTER

THREE

STRUCTURE OF THE DOCUMENTATION

This documentation is organized into the sections below.

• Installation Manual

• Getting Started

• User Manual

• Examples

• Use cases

• Developer Manual

• Release Notes

eProsima DDS Router is an end-user software application that enables the connection of distributed DDS networks.
That is, DDS entities such as publishers and subscribers deployed in one geographic location and using a dedicated
local network will be able to communicate with other DDS entities deployed in different geographic areas on their own
dedicated local networks as if they were all on the same network through the use of eProsima DDS Router. This is
achieved by deploying a DDS Router on an edge device of each local network so that the DDS Router routes DDS
traffic from one network to the other through WAN communication.

Furthermore, DDS Router is a software designed for various forms of distributed networks, such as mesh networks in
which nodes are deployed in different private local networks that are auto-discovered without any centralized network
node, or cloud-based networks where there is a data processing cloud and multiple geographically distributed edge
devices.

3.1 Overview

Following are some of the key features of eProsima DDS Router:

1. WAN communication over TCP: it supports WAN over TCP communication to establish DDS communications
over the Internet.

2. Distributed nature: the user may deploy intermediate DDS Router nodes to discover new entities that enter and
leave the network dynamically.

7

http://www.eprosima.com/

DDS Router Documentation, Release ..

3. Efficient data routing: DDS Router avoids data introspection achieving a zero-copy system in data forwarding.

4. Easy deployment: it is based on an easily configurable modular system for users with no knowledge of computer
networks.

5. Topic allowlisting: it is possible to configure a DDS Router to forward just the user data belonging to a topic
specified by the user.

6. Dynamic topic discovery: the user does not need to fully specify over which topics to communicate (i.e. provide
concrete topic names and types). The discovery of topics matching the allowlisting rules automatically triggers
the creation of all entities required for communication.

7. Quality of Service preservation: DDS Router uses the QoS set in the user’s DDS network and keeps the relia-
bility and durability of the communication for each topic. These QoS are also manually configurable.

3.2 Contacts and Commercial support

Find more about us at eProsima’s webpage.

Support available at:

• Email: support@eprosima.com

• Phone: +34 91 804 34 48

3.3 Contributing to the documentation

DDS Router Documentation is an open source project, and as such all contributions, both in the form of feedback and
content generation, are most welcomed. To make such contributions, please refer to the Contribution Guidelines hosted
in our GitHub repository.

8 Chapter 3. Structure of the documentation

https://eprosima.com/
mailto:support@eprosima.com
https://github.com/eProsima/all-docs/blob/master/CONTRIBUTING.md

DDS Router Documentation, Release ..

3.4 Structure of the documentation

This documentation is organized into the sections below.

• Installation Manual

• Getting Started

• User Manual

• Examples

• Use cases

• Developer Manual

• Release Notes

3.5 DDS Router on Windows

Warning: The current version of DDS Router does not have installers for Windows platforms. Please refer to the
Windows installation from sources section to learn how to build DDS Router on Windows from sources.

3.6 DDS Router on Linux

Warning: The current version of DDS Router does not have installers for Linux platforms. Please refer to the
Linux installation from sources section to learn how to build DDS Router on Linux from sources.

3.7 Docker image

eProsima distributes a Docker image of DDS Router with Ubuntu 20.04 as base image. This image launches an instance
of DDS Router that is configured using a YAML configuration file provided by the user and shared with the Docker
container. The steps to run DDS Router in a Docker container are explained below.

1. Download the compressed Docker image in .tar format from the eProsima Downloads website. It is strongly
recommended to download the image corresponding to the latest version of DDS Router.

2. Extract the image by executing the following command:

load ubuntu-ddsrouter:<version>.tar

where version is the downloaded version of DDS Router.

3. Build a DDS Router configuration YAML file on the local machine. This will be the DDS Router configuration
file that runs inside the Docker container. To continue this installation manual, let’s use one of the configuration
files provided in the Examples section. Open your preferred text editor and copy a full example from the Examples
section into the /<dds_router_ws>/DDS_ROUTER_CONFIGURATION.yaml file, where dds_router_ws is the

3.4. Structure of the documentation 9

https://www.eprosima.com/index.php/downloads-all

DDS Router Documentation, Release ..

path of the configuration file. To make this accessible from the Docker container we will create a shared volume
containing just this file. This is explained in next point.

4. Run the Docker container executing the following command:

docker run -it \
--net=host \
-v /<dds_router_ws>/DDS_ROUTER_CONFIGURATION.yaml:/root/DDS_ROUTER_

→˓CONFIGURATION.yaml \
ubuntu-ddsrouter:v0.3.0

It is important to mention that both the path to the configuration file hosted in the local machine and the one
created in the Docker container must be absolute paths in order to share just one single file as a shared volume.

After executing the previous command you should be able to see the initialization traces from the DDS Router
running in the Docker container. If you want to terminate the application gracefully, just press Ctrl+C to stop
the execution of DDS Router.

3.8 Project Overview

DDS Router is a cross-platform non-graphical application developed by eProsima and powered by Fast DDS that allows
to create a communication bridge that connects two DDS networks that otherwise would be isolated. The main use
case of the DDS Router is to communicate two DDS networks that are physically or virtually separated and belong to
different LANs, allowing the entities of each network to publish and subscribe to local and remote topics indistinctly.

The DDS Router is an application that internally run Participants, which are an abstraction of DDS DomainParticipants.
Each one of these Participants is an communication interface, a “door” to a specific DDS network configuration. These
Participants allow the application to connect to different DDS networks at the same time. Every time one of these
Participants receives a message from the DDS network to which they are connected, they will forward the data and
the source of this message through the other Participants. The DDS Router configuration and the topics in which it
operates depends on the initial DDS Router configuration.

The following schema represents a DDS Router local use case. This scenario presents different DDS networks that are
isolated one to each other due to the Transport Protocol (UDP, TCP, etc.), the Discovery Protocol (Simple, Discovery
Server, etc.) or the DDS Domain Id used by each DDS entity. Configuring the DDS Router to have 4 different Partic-
ipants, each of them configured for one isolated DDS network, will create internally 4 Participants. All the data that
arrives to one of the Participants will be forwarded through the others, allowing all the machines to connect to each
other independently of their different configurations. This data transmission will be accomplished without copying the
data, as all participants will share the pointer to the allocated data, successfully achieving a zero-copy communication
mechanism.

3.8.1 WAN Communication

To achieve a WAN communication of two networks that work in different LANs requires a running DDS Router appli-
cation on each LAN. The DDS Router deployed will communicate to each other using DDS over WAN, and will route
every message received in LAN to the remote DDS Router. Once the remote Router receives data, it will transmit it to
the local networks to which it is connected. This way, both DDS networks will behave as if they would belong to the
same LAN.

Another important feature is that WAN communications are not limited to a single pair of DDS Router. The WAN
communication may be performed using the eProsima Discovery Server discovery mechanism (dynamic discovery over
non-multicast networks). Thus, any DDS Router connected to the same Discovery Servers will works as a standard

10 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/discovery/discovery_server.html#discovery-server

DDS Router Documentation, Release ..

DDS node, publishing and subscribing in the shared DDS topics. This allows to create a non limited and highly scalable
decentralized and distributed DDS network.

3.8.2 Usage Description

The DDS Router is a terminal (non-graphical) application that creates the DDS bridge as long as it is running. The
configuration in YAML format is very intuitive and human-readable. The whole application has been thought to be
user-friendly, following a user-oriented design.

• RUN: In order to run a DDS Router application, just a YAML configuration file is required with the specific
configurations (see section to check how to configure a DDS Router) (see section section to check the application
supported arguments).

• INTERACT: Once the DDS Router application is running, the topics involved in this communication could be
changed in runtime by just changing the YAML configuration file (see section Reload Topics for more details
about re-configuring a running DDS Router).

• STOP: To stop the DDS Router just send a ^C signal to the process, and it will gracefully close the whole
application (see section Close Application for more details on how to close the application).

3.8. Project Overview 11

DDS Router Documentation, Release ..

3.8.3 Common Use Cases

The different cases where the DDS Router could be applied are very varied, and would increase as new Participant
Kinds will be added in future releases. These are most common use cases so far:

Use Case Example
Communicating two different DDS Domain Ids Change Domain Example
Communicating ROS 2 Discovery Server executions ROS2 Discovery Server Example
WAN Communication WAN Example

3.9 Example of usage

This example will serve as a hands-on tutorial, aimed at introducing some of the key concepts and features that eProsima
DDS Router has to offer.

Two disjoint DDS networks will be bridged by means of a pair of routers, allowing for the connection between endpoints
hosted at each of the networks. In particular, two ShapesDemo instances will establish communication after proper
configuration and deployment of the two aforementioned routers.

Note: This example applies to both LAN and WAN scenarios. For the WAN case, make sure that public IP addresses
are used instead of private ones, and that the provided ports are reachable by properly configuring port forwarding in
your Internet router devices.

3.9.1 Launching ShapesDemo

ShapesDemo is an application that publishes and subscribes to shapes of different colors and sizes moving on a board.
This is nothing more than a graphical tool to test the correctness of a specific DDS protocol implementation, as well
as to prove interoperability with other implementations.

Let us launch a ShapesDemo instance in one of the DDS networks, and start publishing in topics Square, Circle and
Triangle with default settings.

Now, run another instance in the other network and subscribe to the same topics chosen in the publisher side (use default
settings).

Note: If you are trying this example in the LAN scenario, make sure a different DDS domain id is used in one of the
ShapesDemo instances in order to avoid direct communication between them.

12 Chapter 3. Structure of the documentation

https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo
https://www.eprosima.com/index.php/products-all/eprosima-shapes-demo

DDS Router Documentation, Release ..

3.9.2 Router configuration

A configuration file is all that is required in order to run a DDS Router instance. In a nutshell, each router will forward
messages if their associated topics match the filters contained in its allowlist. A blocklist may also be specified,
on its own or in addition to an allowlist, but we will not be covering this here.

Let us first add only the Square topic:

allowlist:
- name: Square

Apart from selecting on which topics we wish to send/receive data, we must configure as well the participants that will
ultimately perform communication. Each router instance will contain a simple and a WAN participants. In brief, the
simple participants will be in charge of locally communicating with the corresponding ShapesDemo application, while
the WAN participants will be the ones bridging the connection between the two DDS networks.

The only configuration required for simple participants is the DDS domain identifier.

- name: SimpleParticipant
kind: local
domain: 0

If launching the two routers in the same LAN, set a different domain id in one of the two configuration files (same as
the one previously set for ShapesDemo).

The configuration of WAN participants is more complex, and we will not be covering it here in detail. In short, in this
example both WAN participants will communicate through UDP, with one being the client and the other one having

3.9. Example of usage 13

DDS Router Documentation, Release ..

14 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

the server role. Both participants are required to have a listening address (for the UDP case) where they will
expect to receive traffic, and a connection address in the case of the client, which points at the server’s listening
address. Refer to WAN Participant and WAN Configuration for more information. You may also have a look at WAN
Example for a detailed explanation on how to configure this kind of participant.

Following is an example of client and server configuration files:

client-ddsrouter.yaml

version: v3.0

allowlist:
- name: Square

participants:

- name: SimpleParticipant
kind: local
domain: 0

- name: ClientWAN
kind: wan
connection-addresses:
- ip: 192.168.1.8
port: 11800
transport: udp

listening-addresses:
- ip: 192.168.1.4
port: 11008
transport: udp

server-ddsrouter.yaml

version: v3.0

allowlist:
- name: Square

participants:

- name: SimpleParticipant
kind: local
domain: 1

- name: ServerWAN
kind: wan
listening-addresses:
- ip: 192.168.1.8
port: 11800
transport: udp

3.9. Example of usage 15

DDS Router Documentation, Release ..

3.9.3 Router execution

Now, with the configuration files ready, launching a DDS Router instance is as easy as executing the following com-
mand:

ddsrouter -c config-file.yaml

After setting up both routers, communication between the two ShapesDemo instances should have been established so
the square shape is now visible in the subscriber’s panel.

DDS Router supports the dynamic addition/deletion of topics at runtime (see Reload Topics). Let us test this feature
by adding the circle topic to the allowlist of both routers. Also, by removing the square topic (removing this topic from
one of the routers’ allowlist will suffice) the square data should stop reaching the subscriber. Alternatively, the square
topic may be added to the blocklist, achieving the same effect. See Topic Filtering for more details on allowlisting.

allowlist:
- name: Circle

After applying these changes, the square should no longer be updated in the subscriber’s side (appearing visible but
frozen), while the circle should.

Please feel free to explore sections Examples and Use Cases for more information on how to configure and set up a
router, as well as to discover multiple scenarios where DDS Router may serve as a useful tool.

16 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

3.10 User Interface

eProsima DDS Router is a user application executed from command line and configured through a YAML configuration
file.

• Source Dependency Libraries

• Application Arguments

• Configuration File

• Reload Topics

• Log

• Close Application

3.10.1 Source Dependency Libraries

eProsima DDS Router depends on Fast DDS fastrtps and fastcdr libraries. In order to correctly execute the Router,
make sure that fastrtps and fastcdr are properly sourced.

source <path-to-fastdds-installation>/install/setup.bash

Note: If Fast DDS has been installed in the system, these libraries would be sourced by default.

3.10.2 Application Arguments

The DDS Router application supports several input arguments:

Command Op-
tion

Long option Value Default Value

Help Argument -h --help
Version Argument -v --version
Configuration File Argu-
ment

-c --config-path Readable File Path ./
DDS_ROUTER_CONFIGURATION.
yaml

Reload Time Argument -r --reload-time Unsigned Integer 0
Debug Argument -d --debug
Log Verbosity Argument --log-verbosityinfo warning

error
warning

Log Filter Argument --log-filter String "DDSROUTER"

3.10. User Interface 17

DDS Router Documentation, Release ..

Help Argument

It shows the usage information of the application.

Usage: Fast DDS Router
Connect different DDS networks via DDS through LAN or WAN.
It will build a communication bridge between the different Participants included in the␣
→˓provided configuration file.
To stop the execution gracefully use SIGINT (C^) or SIGTERM (kill) signals.
General options:

Application help and information.
-h --help Print this help message.
-v --version Print version, branch and commit hash.

Application parameters
-c --config-path Path to the Configuration File (yaml format) [Default: ./DDS_ROUTER_
→˓CONFIGURATION.yaml].
-r --reload-time Time period in seconds to reload configuration file. This is needed␣
→˓when FileWatcher functionality is not available (e.g. config file is a symbolic link).␣
→˓Value 0 does not reload file. [Default: 0].
-t --timeout Set a maximum time in seconds for the Router to run. Value 0 does␣
→˓not set maximum. [Default: 0].

Debug options
-d --debug Set log verbosity to Info (Using this option with --log-filter and/
→˓or --log-verbosity will head to undefined behaviour).

--log-filter Set a Regex Filter to filter by category the info and warning log␣
→˓entries. [Default = "DDSROUTER"].

--log-verbosity Set a Log Verbosity Level higher or equal the one given. (Values␣
→˓accepted: "info","warning","error" no Case Sensitive) [Default = "warning"].

Version Argument

It shows the current version of the DDS Router and the hash of the last commit of the compiled code.

Configuration File Argument

Please refer to Configuration File for more information on how to build this configuration file.

Reload Time Argument

Set the Reload Timer in seconds.

18 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

Timeout Argument

This argument allow to set a maximum time while the application will be running. Setting this argument will set the
number of seconds the application will run until it is killed. While the application is waiting for timeout, it is still
possible to kill it via signal. Default value 0 means that the application will run forever (until kill via signal).

Debug Argument

This argument enables the DDS Router logs so the execution can be followed by internal debugging information. This
argument sets Log Verbosity Argument to info and Log Filter Argument to DDSROUTER. For more information about
debugging options, refer to Log.

Note: If this argument is used with any of the other arguments of debugging, the behavior depends on the order of
parser of the arguments.

Log Verbosity Argument

Set the verbosity level so only log messages with equal or higher importance level are shown.

Log Filter Argument

Set a regex string as filter. Only log messages with a category that matches this regex will be printed (ERROR messages
will be always shown unless Log Verbosity Argument is set to ERROR).

3.10.3 Configuration File

A DDS Router requires one and only one YAML configuration file as the operation of this application is configured
via this YAML configuration file. Please refer to DDS Router Configuration for more information on how to build this
configuration file.

This YAML configuration file must be passed as argument to the DDS Router when executed. If no configuration file
is provided as argument, the DDS Router will attempt to load a file named DDS_ROUTER_CONFIGURATION.yaml that
must be in the same directory where the application is executed. If no configuration file is passed as argument, and the
default configuration file does not exist in the current directory, the application will fail.

3.10.4 Reload Topics

The topics that the DDS Router is routing could be changed at runtime. Including topics in configuration’s allowlist
will create new Writers and Readers for each Participant in the Router. Removing a topic from allowlist will disable
this topic, and so it will stop routing data in such topic. Be aware that disabling a topic does not eliminate the entities
of that topic. So, if a topic has been active before, the Writers and Readers will still be present in the DDS Router and
will still receive data.

There exist two methods to reload the list of allowed topics, an active and a passive one. Both methods work over the
same configuration file with which the DDS Router has been initialized.

3.10. User Interface 19

DDS Router Documentation, Release ..

File Watcher

A File Watcher is a process that runs in the background and watches for changes in the DDS Router configuration file.
Every time the file is changed, the OS sends a notification, and the File Watcher listens such notification and interacts
with the DDS Router in order to reload the topics. This event occurs every time the configuration file is saved.

FileWatcher is used in every DDS Router execution by default. However, this method does not work properly in specific
scenarios where the file being watched is not a real file but a link (e.g. Kubernetes executions).

Reload Timer

A timer could be set in order to periodically reload the configuration file. The configuration file will be automatically
reloaded according to the specified time period.

3.10.5 Log

Log module of DDS Router uses the Fast DDS logging module. This log has 3 severity levels: INFO, WARNING and
ERROR. Every log has also a category associated. This is how a log looks like:

Date Category Severity Log message ␣
→˓Function
2022-11-16 14:58:13.375 [MODULE_SUBMODULE Error] It has happen ... because of ... ->␣
→˓Function main

Every log entry has several parts:

• Date: format: year-month-day hour::minute::second::millisecond with millisecond accuracy. This
is the time when the log was added to the log queue, not when it is printed.

• Category: Reference to the module where the log was raised. It is used to filter logs.

• Severity: Could be Info, Warning or Error.

• Log message: The actual log message.

• Function: Name of the function or method that has produced this log entry.

Note: For INFO logs to be compiled, the DDS Router must have been compiled with CMake option
CMAKE_BUILD_TYPE=Debug, or compiled with CMake option LOG_INFO=ON.

If Fast DDS has been compiled in debug mode, it will print the logs of the DDS Router and Fast DDS mixed. In order
to skip Fast DDS logs, compile fastrtps library with CMake option -DLOG_NO_INFO=ON or CMAKE_BUILD_TYPE
different to Debug, or use the argument ``

3.10.6 Close Application

In order to stop a DDS Router application, use one of the following OS signals:

20 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

SIGINT

Send an interruption SIGINT | ^C signal (signal value 2) to the process. Press Ctrl + C in the terminal where the
process is running.

SIGTERM

Send an interruption SIGTERM signal (signal value 15) to the process. Write command kill <pid> in a different
terminal, where <pid> is the id of the process running the DDS Router. Use ps or top programs to check the process
ids.

TIMEOUT

Setting a maximum amount of seconds that the application will work using argument --timeout will close the appli-
cation once the time has expired.

3.11 DDS Router Participant

DDS Router Participant is a DDS Router entity that works as an interface between a network and the core of the router.
Participants are the main elements inside the DDS Router functionality.

• Participant

– Participant Name

– Participant Kind

• Participant creation

• Participant kinds

3.11.1 Participant

A Participant is an abstraction over the DDS DomainParticipant. This entity manages the dynamic discovery of DDS
entities on a specific network or interface. Each Participant is uniquely identified by a Participant Name in a DDS Router
execution and has a predefined Participant Kind that specifies the internal general functionality of the Participant.

Participant Name

It is an alphanumeric string that uniquely identifies a Participant in a DDS Router execution.

3.11. DDS Router Participant 21

DDS Router Documentation, Release ..

Participant Kind

It specifies the kind of the Participant. There are several Participant kinds already defined, which will specify in general
terms how the Participant behaves.

3.11.2 Participant creation

Each participant configuration is specified as a different item of participants array, and each of these configurations
has a unique Participant Name that should not be repeated in a DDS Router execution.

Each Participant Kind is associated with one or several names or aliases that represent it. In order to use a Participant
of a specific kind, use kind tag in the yaml configuration file. If the kind is not any of the valid aliases, the Participant
will not be created and the execution will fail.

Note: There could be as many Participants as required, and their kinds could be repeated, but all names must be
unique.

Below are some examples on how to configure a Participant:

- name: participant_1 # New Participant with Name = 'participant_1'
kind: simple # 'participant_1' will be created of kind 'simple'
extra_configuration: ...

- name: simple # New Participant with Name = 'simple' and Kind = 'simple'
extra_configuration: ...

3.11.3 Participant kinds

Below is the list with all the available Participant Kinds.

Participant Kind Aliases Specific configuration tags Description
Echo Participant echo discovery data verbose Print in stdout all user and/or dis-

covery data received.
Simple Partici-
pant

simple local domain Simple DDS DomainParticipant.

Local Discovery
Server Participant

discovery-server
local-ds ds

guid listening-addresses
connection-addresses tls

Discovery Server DDS DomainPar-
ticipant for local communication.

Discovery Server
WAN Participant

wan-discovery-server
wan-ds

guid listening-addresses
connection-addresses tls

Discovery Server DDS DomainPar-
ticipant for WAN communication.

WAN Participant wan router
initial-peers

guid listening-addresses
connection-addresses tls

Initial Peers DDS DomainPartici-
pant for WAN communication.

22 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

Echo Participant

This Participant prints in stdout all discovery information and/or user data that is received by the DDS Router.

In the case of discovery traces, messages such as the following will be displayed:

New endpoint discovered: Endpoint{<endpoint_guid>;<endpoint_kind>;<topic>}.

For data reception messages, the traces show the following information:

Received data in Participant: <participant_id> in topic: <topic>.

These logs contain the Participant Name of the participant that has originally received the message, and the Topic where
this message has been received. Additionally, extra information such as the data Payload (in hexadecimal format) and
source Endpoint Guid is displayed in verbose mode:

In Endpoint: <endpoint_guid> from Participant: <participant_id> in topic: <topic>␣
→˓payload received: <payload> with specific qos: <specific_qos>.

Notice that this Payload is the same that a standard DDS DataReader will receive if it is connected to one of the
Participants of the DDS Router.

Note: This Participant does not perform any discovery or data reception functionality.

Use case

Use this Participant in order to see in stdout the data that is being relayed by the router, as well as information regarding
discovery events. All the data received by any of the Participants of the router will be printed (if data is true) with
its topic and source guid, along with the payload (in verbose mode).

Kind aliases

• echo

Configuration

Echo Participant accepts three different optional parameters:

• discovery: Whether to echo information regarding discovery events. Defaults to true.

• data: Whether to echo information regarding user data reception. Defaults to false.

• verbose: Display detailed information about the user data received (if data set to true). Defaults to false.

3.11. DDS Router Participant 23

DDS Router Documentation, Release ..

Configuration Example

- name: echo_participant # Participant Name = echo_participant
kind: echo
data: true # Print a trace with every arrival of user data
verbose: true # Show detailed information on user data reception
discovery: false # Do not print traces regarding discovery events

Simple Participant

This kind of Participant refers to a Simple DDS DomainParticipant. This Participant will discover all Participants
deployed in its own local network in the same domain via multicast communication,and will communicate with those
that share publication or subscription topics.

Use case

Use this Participant in order to communicate an internal standard DDS network, such as a ROS 2 or Fast DDS network
in the same LAN.

Kind aliases

• simple

• local

Configuration

The only configuration required to start a Simple Participant is the Domain Id on which it will listen for DDS commu-
nications. Check Configuration section for further details.

Configuration Example

- name: simple_participant # Participant Name = simple_participant
kind: simple
domain: 2 # Domain Id = 2

Local Discovery Server Participant

This kind of Participant refers to a Discovery Server DomainParticipant. This Participant will work as discovery
broker for those Participants that connect to it (clients or servers). It could also connect to one or multiple Discovery
Servers to create a Discovery Server Network.

24 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

Use case

Use this Participant in order to communicate an internal DDS network using Discovery Server. This is highly useful
in networks that do not support multicast communication; or to reduce the number of meta-traffic packets exchanged
in discovery, reducing the network traffic in the discovery process.

Kind aliases

• discovery-server

• local-ds

• ds

• local-discovery-server

Configuration

Local Discovery Server Participant allow configure the standard attributes of a Discovery Server.

• To configure the Discovery Server GuidPrefix, check the following section Configuration section.

• To configure the Discovery Server listening addresses, check the following section Configuration section.

• To configure the Discovery Server connection addresses to connect with other Discovery Servers, check the
following section Configuration section.

Note: The network addresses set in listening-addresses and connection-addresses use UDP transport by default if the
transport is not specified in the address configuration.

Configuration Example

Configure a Local Discovery Server setting the GuidPrefix used for ROS 2 deployments with id 2 (44.53.02.5f.
45.50.52.4f.53.49.4d.41). It listens for clients in localhost in ports 11600 in UDP and 11601 in TCP. This
example connects the local Discovery Server Participant with a remote Discovery Server listening in IPv6 address
2001:4860:4860::8888 and port 11666 and configured with 01.0f.04.00.00.00.00.00.00.00.ca.fe Discov-
ery Server GuidPrefix.

- name: local_discovery_server_participant # Participant Name = local_discovery_
→˓server_participant

kind: discovery-server

discovery-server-guid:
id: 2
ros-discovery-server: true # ROS Discovery Server id =>␣

→˓GuidPrefix = 44.53.02.5f.45.50.52.4f.53.49.4d.41

listening-addresses: # Local Discovery Server Listening␣
→˓Addresses

- ip: 127.0.0.1 # Use UDP by default
(continues on next page)

3.11. DDS Router Participant 25

DDS Router Documentation, Release ..

(continued from previous page)

port: 11600
- ip: 127.0.0.1
port: 11601
transport: tcp # Use TCP transport

connection-addresses: # External Discovery Server Listening␣
→˓Addresses

- discovery-server-guid:
id: 4 # External Discovery Server id =>␣

→˓GuidPrefix = 01.0f.04.00.00.00.00.00.00.00.ca.fe
addresses:

- ip: 2001:4860:4860::8888 # Use UDP by default
port: 11666

Discovery Server WAN Participant

This type of Participant refers to a Discovery Server DomainParticipant that communicates with other Discovery
Server WAN Participants in different networks. This Participant will work as bridge for every Participant working
locally in the LAN and any other LAN that has a DDS Router with an active Discovery Server WAN Participant.

Warning: Do not try to communicate a Discovery Server WAN Participant with any other kind of Participant that
is not of type Discovery Server WAN Participant.

Use case

Use this Participant to communicate an internal DDS network with other LANs through a WAN communication. Each
of the networks to be connected require a running DDS Router, and the messages will be relay from one to another
depending on the topics filtered by each of them.

Kind aliases

• wan-discovery-server

• wan-ds

Configuration

WAN Discovery Server Participant allow configure the standard attributes of a Discovery Server.

• To configure the Discovery Server GuidPrefix, check the following section Configuration section.

• To configure the Discovery Server listening addresses, check the following section Configuration section.

• To configure the Discovery Server connection addresses to connect with other Discovery Servers, check the
following section Configuration section.

Note: The network addresses set in listening-addresses and connection-addresses use UDP transport by default if the
transport is not specified in the address configuration.

26 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

WAN Configuration

Refer to section WAN Configuration for detailed explanation on how to correctly configure the DDS Router for WAN
communication.

Configuration Example

Configure a WAN Discovery Server with GuidPrefix id 2 (01.0f.02.00.00.00.00.00.00.00.ca.fe). It listens
for clients in public IP 82.0.0.1 in port 11600 in TCP. It connects with a remote WAN Participant in IPv6 address
2001:4860:4860::8888 and port 11666 which Discovery Server GuidPrefix is 01.0f.04.00.00.00.00.00.00.
00.ca.fe using UDP transport.

- name: wan_participant # Participant Name = wan_participant

kind: wan-discovery-server

discovery-server-guid:
id: 2 # GuidPrefix = 01.0f.02.00.00.00.00.00.00.

→˓00.ca.fe

listening-addresses: # WAN Discovery Server Listening Addresses
- ip: 82.0.0.1 # Use UDP by default
port: 11600

connection-addresses: # Another WAN Participant Listening␣
→˓Addresses

- discovery-server-guid:
id: 4 # External Discovery Server id =>␣

→˓GuidPrefix = 01.0f.04.00.00.00.00.00.00.00.ca.fe
addresses:

- ip: 2001:4860:4860::8888
port: 11666
transport: udp # Use UDP transport

WAN Participant

This type of Participant refers to a Initial Peers DomainParticipant that communicates with other WAN Participants
in different networks. This Participant will work as bridge for every Participant working locally in the LAN and any
other LAN that has a DDS Router with an active WAN Participant.

Warning: Do not try to communicate a WAN Participant with any other kind of Participant that is not of type
WAN Participant.

3.11. DDS Router Participant 27

DDS Router Documentation, Release ..

Use case

Use this Participant to communicate an internal DDS network with other LANs through a WAN communication. Each
of the networks to be connected require a running DDS Router, and the messages will be relay from one to another
depending on the topics filtered by each of them.

Kind aliases

• wan

• router

• initial-peers

Configuration

WAN Participant allow configure the listening and connection addresses, whether if it should be located from remote
Participants or it should locate others remote Participants:

• To configure the listening addresses, check the following section Configuration section.

• To configure the connection addresses to connect with other Wan Participant, check the following section Con-
figuration section.

Note: The network addresses set in listening-addresses and connection-addresses use UDP transport by default if the
transport is not specified in the address configuration.

Repeater

This Participant allows a tag repeater to be used as a TURN server. Please refer to section Repeater DDS Router for
more information.

WAN Configuration

Refer to section WAN Configuration for detailed explanation on how to correctly configure the DDS Router for WAN
communication.

Configuration Example

Configure a WAN Participant. It listens for clients in public IP 82.0.0.1 in port 11600 in TCP. It connects with a
remote Participant in IPv6 address 2001:4860:4860::8888 and port 11666 using TCP transport.

- name: wan_participant # Participant Name = wan_participant

kind: wan

listening-addresses: # WAN Participant Listening Addresses
- ip: 82.0.0.1 # Use UDP by default
port: 11600

(continues on next page)

28 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

(continued from previous page)

connection-addresses: # Another WAN Participant Listening␣
→˓Addresses

- ip: 2001:4860:4860::8888
port: 11666
transport: tcp # Use UDP transport

3.12 DDS Router Configuration

A DDS Router is configured by a .yaml configuration file. This .yaml file contains all the information regarding the
DDS Router configuration, such as topics filtering and Participants configurations. Configuration files may be easily
validated by using the YAML Validator tool.

• Configuration version

• Specs Configuration

– Number of Threads

– Maximum History Depth

• Built-in Topics

– Topic Quality of Service

• Topic Filtering

– Allow topic list (allowlist)

– Block topic list (blocklist)

– Examples of usage

• Participant Configuration

– Domain Id

– Repeater Participant

– Network Address

– External Port

– Discovery Server GuidPrefix

– Listening Addresses

– Initial Peers Connection Addresses

– Discovery Server Connection Addresses

• General Example

3.12. DDS Router Configuration 29

DDS Router Documentation, Release ..

3.12.1 Configuration version

The YAML Configuration support a version value to identify the configuration version to parse the file. In future
releases could be common to change the YAML format (some key words, fields, etc.). This value allow to keep using
the same YAML file using an old configuration format, maintaining compatibility with future releases.

Configuration Versions String in version tag DDS Router activation release
version 1.0 v1.0 v0.1.0
version 2.0 v2.0 v0.2.0
version 3.0 v3.0 v0.3.0

Current configuration version is v3.0. This is the configuration version that is described along this page.

Note: The current default version when tag version is not set is v1.0.

Warning: Deprecation Warning. In future releases tag version will be mandatory.

3.12.2 Specs Configuration

The YAML Configuration supports a specs optional tag that contains certain options related with the overall config-
uration of the DDS Router instance to run. The values available to configure are:

Number of Threads

specs supports a threads optional value that allows the user to set a maximum number of threads for the internal
ThreadPool. This ThreadPool allows to limit the number of threads spawned by the application. This improves the
performance of the data transmission between Participants.

This value should be set by each user depending on each system characteristics. In case this value is not set, the default
number of threads used is 12.

Maximum History Depth

specs supports a max-depth optional value that configures the history size of the Fast DDS internal entities. By
default, the depth of every RTPS History instance is 5000, which sets a constraint on the maximum number of samples
a DDS Router instance can deliver to late joiner Readers configured with TRANSIENT_LOCALDurabilityQosPolicyKind.
Its value should be decreased when the sample size and/or number of created endpoints (increasing with the number
of topics and DDS Router participants) are as big as to cause memory exhaustion issues. Likewise, one may choose to
increase this value if wishing to deliver a greater number of samples to late joiners and enough memory is available.

30 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/core/policy/standardQosPolicies.html#durabilityqospolicykind

DDS Router Documentation, Release ..

3.12.3 Built-in Topics

Apart from the dynamic creation of Endpoints in DDS Topics discovered, the discovery phase can be accelerated by
using the builtin topic list (builtin-topics). By defining topics in this list, the DDS router will create the DataWriters
and DataReaders in router initialization. This feature also allows to manually force the QoS of a specific topic, so the
entities created in such topic follows the specified QoS and not the one first discovered.

Topic Quality of Service

For every topic contained in this list, both name and type must be specified and contain no wildcard characters. The
entry keyed is optional, and defaults to false. Apart from these values, the tag qos under each topic allows to
configure the following values:

Quality of Service Yaml tag Data type Default value QoS set
Reliability reliability bool false RELIABLE /

BEST_EFFORT
Durability durability bool false TRANSIENT_LOCAL

/ VOLATILE
History Depth depth integer default value •

Partitions partitions bool false Topic with / without
partitions

Ownership ownership bool false EXCLUSIVE_OWNERSHIP_QOS
/
SHARED_OWNERSHIP_QOS

builtin-topics:
- name: HelloWorldTopic
type: HelloWorld
qos:
reliability: true # Use QoS RELIABLE
durability: true # Use QoS TRANSIENT_LOCAL
depth: 100 # Use History Depth 100
partitions: true # Topic with partitions
ownership: false # Use QoS SHARED_OWNERSHIP_QOS

3.12.4 Topic Filtering

DDS Router includes a mechanism to automatically detect which topics are being used in a DDS network. By auto-
matically detecting these topics, a DDS Router creates internal DDS Writers and Readers for each topic and for each
Participant in order to relay the data published on each discovered topic.

Note: DDS Router entities are created with the QoS of the first Subscriber found in this Topic.

DDS Router allows filtering of DDS Topics, that is, it allows to define which DDS Topics are going to be relayed by
the application. This way, it is possible to define a set of rules in DDS Router to filter those data samples the user does
not wish to forward.

It is not mandatory to define such set of rules in the configuration file. In this case, a DDS Router will forward all the
data published under the topics that it automatically discovers within the DDS network to which it connects.

3.12. DDS Router Configuration 31

DDS Router Documentation, Release ..

To define these data filtering rules based on the Topics to which they belong, three lists are available:

• Allowed topics list (allowlist)

• Block topics list (blocklist)

• Builtin topics list (builtin-topics)

These three lists of topics listed above are defined by a tag in the YAML configuration file, which defines a YAML vector
([]). This vector contains the list of topics for each filtering rule. Each Topic is determined by its entries name, type
and keyed, with only the first one being mandatory.

Topic entries Data type Default value
name string -
type string "*"
keyed bool Both true and false

The entry keyed determines whether the corresponding topic is keyed or not. See Topic section for further information
about the topic.

Note: Tags allowlist, blocklist and builtin-topics must be at yaml base level (it must not be inside any other
tag).

Note: Placing quotation marks around values in a YAML file is generally optional. However, values containing
wildcard characters must be enclosed by single or double quotation marks.

Allow topic list (allowlist)

This is the list of topics that DDS Router will forward, i.e. the data published under the topics matching the expressions
in the allowlist will be relayed by DDS Router.

Note: If no allowlist is provided, data will be forwarded for all topics (unless filtered out in blocklist).

Block topic list (blocklist)

This is the list of topics that the DDS Router will block, that is, all data published under the topics matching the filters
specified in the blocklist will be discarded by the DDS Router and therefore will not be relayed.

This list takes precedence over the allowlist. If a topic matches an expression both in the allowlist and in the
blocklist, the blocklist takes precedence, causing the data under this topic to be discarded.

32 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/dds_layer/topic/typeSupport/typeSupport.html#data-types-with-a-key

DDS Router Documentation, Release ..

Examples of usage

The following is an example of how to use the allowlist, blocklist and builtin-topics configurations to setup
the DDS Router filtering rules.

Dynamic topic discovery example

This example shows how the DDS Router is initially configured to forward the rt/chatter topic (default ROS 2 topic
for talker and listener) with type name std_msgs::msg::dds_::String_, while the rest of the topics in the
DDS network are expected to be dynamically discovered. Additionally, two rules are specified in the blocklist in
order to filter out messages of no interest to the user (in this case ROS2 services related topics).

builtin-topics:
- name: rt/chatter
type: std_msgs::msg::dds_::String_

blocklist:
- name: "rq/*"
- name: "rr/*"

Allowlist and blocklist collision

In the following example, the HelloWorldTopic topic is both in the allowlist and (implicitly) in the blocklist, so
according to the blocklist preference rule this topic is blocked. Moreover, only the topics present in the allowlist are
relayed, regardless of whether more topics are dynamically discovered in the DDS network. In this case the forwarded
topics are AllowedTopic1 with data type Allowed and AllowedTopic2 regardless of its data type.

allowlist:
- name: AllowedTopic1
type: Allowed

- name: AllowedTopic2
type: "*"

- name: HelloWorldTopic
type: HelloWorld

blocklist:
- name: "*"
type: HelloWorld

3.12.5 Participant Configuration

At the yaml base level, along with builtin-topics tag, there will be the tag participants. participants handles
an array of Participant configurations. Each Participant is identified by a unique Participant Name and requires to set
the kind of the Participant. There could be any number of Participants, and Participant kinds could be repeated.

Each Participant has its specific configuration. Please, refer to Participant kinds in order to see each of the Participant
Kinds requirements.

Warning: Do not configure two Participants in a way that they can communicate to each other (e.g. two Simple
participants in the same domain). This will lead to an infinite feedback loop between each other.

3.12. DDS Router Configuration 33

DDS Router Documentation, Release ..

In the following configuration example, the DDS Router will create two Simple Participants, one for domain 0 and
one for domain 1. This is a typical use case of DDS Domain bridge. The topics allowed in the two domains will start
communicating to each other. Note that the communication is not P2P performed between the end-user DDS entities,
i.e. the data must reach the DDS Router and this will forward the data.

participants: # Tag to introduce the participants configurations array

################

- name: Participant0 # Participant Name = Participant0
kind: local # Participant Kind = simple
domain: 0 # DomainId = 0

################

- name: my_custom_part # Participant Name = my_custom_part
kind: simple # Participant Kind = echo
domain: 1 # DomainId = 1

The first Participant Participant0 has Participant Name Participant0 and is configured to be of the simple Participant
Kind, and to communicate locally in domain 0. The second Participant has Participant Name simple and it is configured
to be of the simple kind and to communicate locally with domain 1.

Domain Id

Tag domain configures the Domain Id of a specific Participant. Be aware that some Participants (e.g. Discovery
Servers) does not need a Domain Id configuration.

domain: 101

Repeater Participant

Optional tag repeater configures a WAN Participant as a Repeater point. This means that this Participant will forward
all the information received from its Readers by its Writer.

Check the following Repeater DDS Router to know how to use the repeater Participant attribute.

repeater: true

Note: This tag is only supported in configuration versions above v2.0.

34 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

Network Address

Network Addresses are elements that can be configured for specific Participants. An Address is defined by:

• IP: IP of the host (public IP in case of WAN communication).

• Port: Port where the Participant is listening.

• External Port: Public port accessible for external entities (only for TCP).

• Transport Protocol: UDP or TCP. If it is not set, it would be chosen by default depending on the Participant Kind.

• IP version: v4 or v6. If it is not set, it would be chosen depending on the IP string format.

• Domain Name: Domain unique name to ask DNS server for the related IP. This field is ignored if ip is specified.

ip: 127.0.0.1
port: 11666
external-port: 11670
transport: tcp
ip-version: v4

################

ip: 2001:4860:4860::8844 # Recognized as IPv6
port: 1616
transport: udp

################

domain: localhost # DNS call return value = 127.0.0.1
port: 33333 # Uses UDP by default

External Port

External port is used to configure a Server (Discovery Server or Initial Peers) that runs under a NAT and uses TCP
transport. This value could be set in a TCP listening address to differentiate the public and the internal port. In case
this value is not set, the external port is considered to be the same as the internal one. If both ports coincide,
external and internal port in the network router port forwarding rules must coincide. For more information, check
section External port.

Discovery Server GuidPrefix

A Discovery Server requires a DDS GuidPrefix in order to other Participants connect to it. Under the
discovery-server-guid tag, there are several possibilities for configuring a GuidPrefix.

3.12. DDS Router Configuration 35

DDS Router Documentation, Release ..

Discovery Server GuidPrefix by string

The GuidPrefix of the Discovery Server can be configured using guid tag. Be aware of using the correct format for
GuidPrefix. That is, 12 hexadecimal numbers (lower than ff) separated with ..

discovery-server-guid:
guid: "1.f.1.0.0.0.0.0.0.0.ca.fe" # GuidPrefix = 01.0f.01.00.00.00.00.00.00.00.

→˓ca.fe

Discovery Server GuidPrefix by Id

Using tag id, the GuidPrefix will be calculated arbitrarily using a default DDS Router GuidPrefix. This default Guid-
Prefix is 01.0f.<id>.00.00.00.00.00.00.00.ca.fe. Default value for id is 0. This entry is ignored if guid is
specified.

discovery-server-guid:
id: 13 # GuidPrefix = 01.0f.0d.00.00.00.00.00.00.00.

→˓ca.fe

Note: In the current version of the DDS Router only ids in the range 0 to 256 are allowed. In future releases it would
be implemented to allow a wider range of ids.

ROS Discovery Server GuidPrefix

There is a specific GuidPrefix for ROS 2 executions, so it could be used using Fast DDS CLI and
ROS 2 ROS_DISCOVERY_SERVER environment variable (https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/ros2/
discovery_server/ros2_discovery_server.html).

The ROS 2 Discovery Server GuidPrefix is set by default to 44.53.<id>.5f.45.50.52.4f.53.49.4d.41 where
<id> is the specific id of the Server. This GuidPrefix also allow an id` value to specify which id is used in the
GuidPrefix. Default value for id is 0.

discovery-server-guid:
ros-discovery-server: true # GuidPrefix = 44.53.x.5f.45.50.52.4f.53.49.4d.

→˓41
id: 13 # GuidPrefix = 44.53.0d.5f.45.50.52.4f.53.49.

→˓4d.41

Listening Addresses

Tag listening-addresses configures the network addresses where this Participant is going to listen for remote
Participants. listening-addresses is key for an array of Network Addresses.

listening-addresses:
- ip: 127.0.0.1 # UDP by default
port: 11667

- ip: 2001:4860:4860::8844 # Recognized as IPv6
port: 11666

(continues on next page)

36 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/ros2/discovery_server/ros2_discovery_server.html
https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/ros2/discovery_server/ros2_discovery_server.html

DDS Router Documentation, Release ..

(continued from previous page)

external-port: 11668
transport: tcp

Initial Peers Connection Addresses

Tag connection-addresses configure a connection with one or multiple remote WAN Participants.
connection-addresses is key for an array of Network Addresses.

connection-addresses:
- ip: 127.0.0.1
port: 11666

- ip: 2001:4860:4860::8844
port: 11668
transport: tcp

Discovery Server Connection Addresses

Tag connection-addresses configure a connection with one or multiple remote Discovery Servers.
connection-addresses is the key for an array in which each element has a GuidPrefix referencing the Dis-
covery Server to connect with; and a tag addresses configuring the addresses of such Discovery Server. Each
element inside addresses must follow the configuration for Network Address.

connection-addresses:
- discovery-server-guid:

guid: 44.53.0d.5f.45.50.52.4f.53.49.4d.41
addresses:
- ip: 127.0.0.1
port: 11666

- discovery-server-guid:
id: 4

addresses:
- ip: 2001:4860:4860::8888
port: 11667
transport: tcp

- ip: 2001:4860:4860::8844
port: 11668
transport: tcp

3.12.6 General Example

A complete example of all the configurations described on this page can be found below.

Version Latest
version: v3.0

specs:
threads: 10
max-depth: 1000

(continues on next page)

3.12. DDS Router Configuration 37

DDS Router Documentation, Release ..

(continued from previous page)

Relay topic rt/chatter and type std_msgs::msg::dds_::String_
Relay topic HelloWorldTopic and type HelloWorld

builtin-topics:

- name: rt/chatter
type: std_msgs::msg::dds_::String_

- name: HelloWorldTopic
type: HelloWorld
qos:
reliability: true
durability: true

Do not allow ROS2 services

blocklist:
- name: "rr/*"
- name: "rq/*"

participants:

####################

Simple DDS Participant in domain 3

- name: Participant0 # Participant Name = Participant0

kind: local # Participant Kind = local (= simple)

domain: 3 # DomainId = 3

####################

Discovery Server DDS Participant with ROS GuidPrefix so a local ROS 2 Client could␣
→˓connect to it
This Discovery Server will listen in ports 11600 and 11601 in localhost

- name: ServerROS2 # Participant Name = ServerROS2

kind: local-discovery-server # Participant Kind = local-discovery-server

discovery-server-guid:
id: 1
ros-discovery-server: true # ROS Discovery Server id => GuidPrefix = 44.53.01.

→˓5f.45.50.52.4f.53.49.4d.41

listening-addresses: # Local Discovery Server Listening Addresses
- ip: 127.0.0.1 # IP = localhost ; Transport = UDP (by default)
port: 11600 # Port = 11600

- ip: 127.0.0.1 # IP = localhost

(continues on next page)

38 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

(continued from previous page)

port: 11601 # Port = 11601
external-port: 11602 # External Port = 11602
transport: tcp # Transport = TCP

connection-addresses:
- discovery-server-guid:

id: 2
ros-discovery-server: true

addresses:
- domain: "localhost"
port: 22000

####################

Participant that will communicate with a DDS Router in a different LAN.
This Participant will work as the remote DDS Router Client, so it sets the connection␣
→˓address of the remote one.

- name: Wan # Participant Name = Wan

kind: wan-ds # Participant Kind = Discovery Server WAN

discovery-server-guid:
id: 2 # Internal WAN Discovery Server id => GuidPrefix =␣

→˓01.0f.02.00.00.00.00.00.00.00.ca.fe

connection-addresses: # WAN Discovery Server Connection Addresses
- discovery-server-guid:

id: 4 # External WAN Discovery Server id => GuidPrefix =␣
→˓01.0f.04.00.00.00.00.00.00.00.ca.fe

addresses:
- ip: 8.8.8.8 # IP = 8.8.8.8
port: 11666 # Port = 11666
transport: udp # Transport = UDP

3.13 WAN Configuration

In order to communicate a DDS Router via WAN , some configurations may be required.

3.13.1 NAT Traversal

If the DDS Router is under a NAT , a remote DDS Router in a different LAN will not be able to reach it. Thus, NAT
traversal methods will be required. The most common method that we recommend is configuring the network router
so it forwards a specific port from the internet to a specific host.

Note: NAT Traversal communication only affects to IPv4 communication. Using IPv6 would not create NAT under
network routers so every device could be accessed externally. Thus, configurations explained in this section do not
apply to IPv6 deployments.

3.13. WAN Configuration 39

DDS Router Documentation, Release ..

Port Forwarding

This is the easiest way to achieve NAT traversal. Most network routers support a graphical interface where port for-
warding could be easily set.

External port

In order to configure the DDS Router to connect under a NAT, two ports must be taken into account. The internal port
(a.k.a. port) is the one that the host of the DDS Router will use to open a socket and to receive information. The
external port (external-port) references the public port meant for other entities to be able to locate this DDS Router.
Setting the external port is useful so the network router port forwarding could redirect from a public port to a different
value of internal host port.

Note: External port configuration is not mandatory. If not set the internal and the external port must coincide in the
network router port forwarding rules.

Warning: External port is only available for TCP communication. In UDP communication the internal and the
external port must coincide in the network router port forwarding rules.

3.13.2 TCP vs UDP

TCP and UDP are two well known network transport protocols. Both have their advantages and disadvantages regarding
the scenario. These are a list of tips to help choosing whether to use one or the other.

Feature UDP TCP
Commu-
nication
speed

Fast Slower

Reliabil-
ity

No Transport Layer reliability (could has DDS reliability) Transport Layer reliability (duplicated
if DDS reliability is used)

Port For-
warding

Require both sides of the communication to have ports for-
warded from the router. Require internal and external port
to coincide.

Require only server side of the commu-
nication to have port forwarded from
the router.

Note: DDS is thought to work over UDP and has its own reliability mechanisms. Thus, the DDS Router uses UDP
transport by default for every address that has not explicitly specified a transport in the configuration file.

40 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

3.13.3 TLS

eProsima DDS Router also supports TLS over TCP, and its configuration can be set per participant for types WAN
Discovery Server and WAN. Following is a list of the accepted entries under the tls tag:

Tag Requiredness Description Example
ca Mandatory for TLS clients if

peer_verification active.
Path to the CA (Certification-
Authority) file.

ca.crt

password Optional for TLS servers Password of the
private_key file.

<private_key_file_password>

private_key Mandatory for TLS servers Path to the private key certifi-
cate file.

ddsrouter.key

cert Mandatory for TLS servers Path to the public certificate
chain file.

ddsrouter.crt

dh_params Mandatory for TLS servers Path to the Diffie-Hellman
parameters file.

dh_params.pem

peer_verificationOptional for clients. Whether to verify the server.
(Default true).

true

sni_host Optional for clients if using SNI. Name of the server to connect
with.

my_server.com

Note: Although in principle only required for TLS clients (with peer verification), the CA (Certification- Authority)
file may also be provided for TLS servers when willing to connect them to other participants configured as servers.

3.13.4 Examples

TCP Port Forwarding Example

Let be the scenario where user A host HA has a private IP 192.168.1.2 given by network router RA, with a public
IP 1.1.1.1. Let user B with host HB has a private IP 192.168.2.2 given by network router RB, with a public IP
2.2.2.2. A will act as server of the TCP communication, while B will act as client.

User A should set a port forwarding rule in router RA as 11666 -> 192.168.1.2:11667. That is, every datagram that
arrives to IP 1.1.1.1:11666 will be forwarded to 192.168.1.2:11667. User A should set its listening-addresses as
follows:

- name: WANServerParticipant_userA
kind: wan

listening-addresses:
- ip: 1.1.1.1 # Public IP of host Ha
port: 11667 # Physical port used for the dds router host
external-port: 11666 # Port forwarded router Ra
transport: tcp # Transport protocol

User B should set connection-addresses to connect to HA as follows:

- name: WANClientParticipant_userB
kind: wan

(continues on next page)

3.13. WAN Configuration 41

https://fast-dds.docs.eprosima.com/en/latest/fastdds/transport/tcp/tls.html

DDS Router Documentation, Release ..

(continued from previous page)

connection-addresses:
- ip: 1.1.1.1 # Public IP of Ha
port: 11666 # Port forwarded in Ra
transport: tcp # Transport protocol

This way, B will connect to A. A will be able to receive the message because RA will forward the message to HA. Once
A has received the message, a TCP channel will be set, and the communication will travel both ways without requiring
to traverse any other NAT.

UDP Port Forwarding Example

Let be the scenario where user A host HA has a private IP 192.168.1.2 given by network router RA, with a public
IP 1.1.1.1. Let user B with host HB has a private IP 192.168.2.2 given by network router RB, with a public IP
2.2.2.2. A and B will communicate via UDP, so there is no need to set a client and a server. It does not matter whether
A knows B address, B knows A, or both know each other. In this example, B will know A address, and not the other
way around.

User A should set a port forwarding rule in router RA as 11666 -> 192.168.1.2:11666. That is, every datagram that
arrives to IP 1.1.1.1:11666 will be forwarded to 192.168.1.2:11666. User A should set its listening-addresses as
follows:

- name: WANServerParticipant_userA
kind: wan

listening-addresses:
- ip: 1.1.1.1 # Public IP of host Ha
port: 11666 # Internal and External port

User B should set a port forwarding rule in router RB as 11777 -> 192.168.2.2:11777. This is, every datagram that
arrives to IP 2.2.2.2:11777 will be forwarded to 192.168.2.2:11777. User B should set its listening-addresses
and connection-addresses as follows:

- name: WANClientParticipant_userB
kind: wan

listening-addresses:
- ip: 2.2.2.2 # Public IP of host Hb
port: 11777 # Internal and External port

connection-addresses:
- ip: 1.1.1.1 # Public IP of Ha
port: 11666 # Port forwarded in Ra

This way, B will connect to A. Once A receives the message from B, it will communicate with it via address 2.2.2.
2:11777. B will continue communicating with A via address 1.1.1.1:11666.

42 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

TLS Configuration Example

Below is an example on how to configure a WAN participant as a TLS server and client:

- name: TLS_Server
kind: wan

listening-addresses:
- ip: 1.1.1.1
port: 11666
transport: tcp

tls:
ca: ca.crt
password: ddsrouterpass
private_key: ddsrouter.key
cert: ddsrouter.crt
dh_params: dh_params.pem

- name: TLS_Client
kind: wan

connection-addresses:
- ip: 1.1.1.1
port: 11666
transport: tcp

tls:
ca: ca.crt

You may also have a look at <path/to/ddsrouter_tool>/share/resources/configurations/security/ di-
rectory, which contains examples of key and certificate files as well as a script with the commands used to generate
them.

3.14 YAML Validator

Configuration files used to launch a DDS-Router instance need to follow a specific structure, which is extensively
described along section DDS Router Configuration. The YAML Validator tool has been developed for the sole purpose
of validating user-defined configuration files in an easy manner.

Note: Yaml Validator tool is supported for 3.0 configuration version only.

After having sourced the DDS Router workspace, execute the following command in order to validate a YAML con-
figuration file:

ddsrouter_yaml_validator --config-file ddsrouter-config.yaml

Alternatively, the user may choose to validate against a different schema, by using instead the command below:

ddsrouter_yaml_validator --config-file ddsrouter-config.yaml --schema schema.json

3.14. YAML Validator 43

DDS Router Documentation, Release ..

3.15 Nomenclature

3.15.1 DDS Router nomenclature

Payload Raw data (no format specified) that is received and sent forward from the DDS Router.

Participant nomenclature

Participant DDS Router communication Interface. It is an abstraction over DDS DomainParticipant.

This term is explained here.

Participant Name Unique identifier of a Participant.

This term is explained here.

Participant Kind Element that identifies a Participant kind. It can be set as a string that references an alias of an
existing Participant Kind.

This term is explained here.

3.15.2 DDS nomenclature

DataReader DDS element that subscribes to a specific Topic. It belong to one and only one Participant, and it is
uniquely identified by a Guid.

See Fast DDS documentation for further information.

DataWriter DDS entity that publish data in a specific Topic. It belong to one and only one Participant, and it is
uniquely identified by a Guid.

See Fast DDS documentation for further information.

Discovery Server Discovery Server Discovery Protocol is a Fast DDS feature that enables a new Discovery mechanism
based on a Server that filters and distribute the discovery information. This is highly recommended in networks
where multicast is not available (e.g. WAN).

See Fast DDS documentation for further information.

Domain Id The Domain Id is a virtual partition for DDS networks. Only DomainParticipants with the same Domain
Id would be able to communicate to each other. DomainParticipants in different Domains will not even discover
each other.

See Fast DDS documentation for further information.

DomainParticipant A DomainParticipant is the entry point of the application to a DDS Domain. Every DomainPar-
ticipant is linked to a single domain from its creation, and cannot change such domain. It also acts as a factory
for Publisher, Subscriber and Topic.

See Fast DDS documentation for further information.

Endpoint DDS element that publish or subscribes in a specific Topic. Endpoint kinds are DataWriter or DataReader.

Guid Global Unique Identifier. It contains a GuidPrefix and an EntityId. The EntityId uniquely identifies sub-entities
inside a Participant. Identifies uniquely a DDS entity (DomainParticipant, DataWriter or DataReader).

GuidPrefix Global Unique Identifier shared by a Participant and all its sub-entities. Identifies uniquely a DDS Partic-
ipant.

44 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/subscriber/subscriber.html
https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/publisher/dataWriter/dataWriter.html
https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/discovery/discovery_server.html
https://fast-dds.docs.eprosima.com/en/v2.4.1//fastdds/dds_layer/domain/domain.html
https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/domain/domainParticipant/domainParticipant.html

DDS Router Documentation, Release ..

Initial Peers It is a Fast DDS Discovery Protocol that allows to send the discovery information directly to the partici-
pants configured. This is highly recommended for static networks where multicast is not available (e.g. WAN).

See Fast DDS documentation for further information.

Topic DDS isolation abstraction to encapsulate subscriptions and publications. Each Topic is uniquely identified by a
topic name and a topic type name (name of the data type it transmits).

See Fast DDS documentation for further information.

3.16 Echo Example

The following YAML configuration file configures a DDS Router to create a Simple Participant in Domain Id 0 and an
Echo Participant that will print in stdout every message get in Domain 0, as well as information regarding discovery
events.

##################################
CONFIGURATION VERSION
version: v3.0 # 0

##################################
ALLOWED TOPICS
Allowing FastDDS and ROS2 HelloWorld demo examples topics

allowlist:
- name: HelloWorldTopic # 1
type: HelloWorld # 1

- name: rt/chatter # 2
type: std_msgs::msg::dds_::String_

##################################
PARTICIPANTS
participants:

##################################
SIMPLE PARTICIPANT
This participant will subscribe to topics in allowlist in specific domain and listen␣
→˓every message published there

- name: SimpleParticipant # 3
kind: local # 4
domain: 0 # 5

##################################
ECHO PARTICIPANT
This Participant will print in stdout every message received by the other Participants,
→˓ as well as discovery information

- name: EchoParticipant # 6
kind: echo # 7
discovery: true # 8
data: true # 9
verbose: true # 10

3.16. Echo Example 45

https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/simple.html#initial-peers
https://fast-dds.docs.eprosima.com/en/v2.4.1/fastdds/dds_layer/topic/topic.html

DDS Router Documentation, Release ..

3.16.1 Configuration

Allowed Topics

This section lists the Topics that the DDS Router will route from one Participant to the other. Topic HelloWorldTopic
with datatype HelloWorld, and ROS 2 topic rt/chatter with datatype std_msgs::msg::dds_::String_ will be
forwarded from SimpleParticipant to EchoParticipant, that will print the message in stdout.

allowlist:
- name: HelloWorldTopic # 1
type: HelloWorld # 1

- name: rt/chatter # 2
type: std_msgs::msg::dds_::String_

Simple Participant

This Participant is configured with a name, a kind and the Domain Id, which is 0 in this case.

- name: SimpleParticipant # 3
kind: local # 4
domain: 0 # 5

Echo Participant

This Participant is configured to display information regarding messages received, as well as discovery events. See
Echo Participant Configuration for more details.

- name: EchoParticipant # 6
kind: echo # 7
discovery: true # 8
data: true # 9
verbose: true # 10

3.16.2 Execute example

For a detailed explanation on how to execute the DDS Router, refer to this section.

Note: Internal entities for a specific topic are only created once a data receiver (Reader/Subscriber) is discovered.
Hence, for these example to work, either substitute allowlist for builtin-topics in the configuration file, or launch a
subscriber/listener in the same domain (0).

46 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

Execute with Fast DDS HelloWorld Example

Execute a Fast DDS HelloWorld example:

./DDSHelloWorldExample publisher

Execute DDS Router with this configuration file (available in <path/to/ddsrouter_tool>/share/resources/
configurations/examples/echo.yaml). The expected output from the DDS Router, printed by the Echo
Participant is:

New endpoint discovered: Endpoint{01.0f.b8.d9.81.30.3d.a7.01.00.00.00|0.0.1.3;writer;
→˓DdsTopic{HelloWorldTopic;HelloWorld;Fuzzy{Level(20) TopicQoS{TRANSIENT_LOCAL;RELIABLE;
→˓SHARED;depth(5000)}}};SpecificEndpointQoS{Partitions{};OwnershipStrength{0}};Active;
→˓ParticipantId{SimpleParticipant}}.
In Endpoint: 01.0f.b8.d9.81.30.3d.a7.01.00.00.00|0.0.1.3 from Participant: ParticipantId
→˓{SimpleParticipant} in topic: DdsTopic{HelloWorldTopic;HelloWorld;Fuzzy{Level(20)␣
→˓TopicQoS{VOLATILE;BEST_EFFORT;SHARED;depth(5000)}}} payload received: Payload{00 01 00␣
→˓00 01 00 00 00 0b 00 00 00 48 65 6c 6c 6f 57 6f 72 6c 64 00 00} with specific qos:␣
→˓SpecificEndpointQoS{Partitions{};OwnershipStrength{0}}.
In Endpoint: 01.0f.b8.d9.81.30.3d.a7.01.00.00.00|0.0.1.3 from Participant: ParticipantId
→˓{SimpleParticipant} in topic: DdsTopic{HelloWorldTopic;HelloWorld;Fuzzy{Level(20)␣
→˓TopicQoS{VOLATILE;BEST_EFFORT;SHARED;depth(5000)}}} payload received: Payload{00 01 00␣
→˓00 02 00 00 00 0b 00 00 00 48 65 6c 6c 6f 57 6f 72 6c 64 00 00} with specific qos:␣
→˓SpecificEndpointQoS{Partitions{};OwnershipStrength{0}}.
...
In Endpoint: 01.0f.b8.d9.81.30.3d.a7.01.00.00.00|0.0.1.3 from Participant: ParticipantId
→˓{SimpleParticipant} in topic: DdsTopic{HelloWorldTopic;HelloWorld;Fuzzy{Level(20)␣
→˓TopicQoS{VOLATILE;BEST_EFFORT;SHARED;depth(5000)}}} payload received: Payload{00 01 00␣
→˓00 0a 00 00 00 0b 00 00 00 48 65 6c 6c 6f 57 6f 72 6c 64 00 00} with specific qos:␣
→˓SpecificEndpointQoS{Partitions{};OwnershipStrength{0}}.

Execute with ROS 2 demo nodes

Execute a ROS 2 demo_nodes_cpp talker in default domain 0:

ros2 run demo_nodes_cpp talker

Execute DDS Router with this configuration file (available in <path/to/ddsrouter_tool>/share/resources/
configurations/examples/echo.yaml). The expected output from the DDS Router, printed by the Echo
Participant is:

New endpoint discovered: Endpoint{01.0f.b8.d9.b6.3a.7d.95.01.00.00.00|0.0.1.3;writer;
→˓DdsTopic{ros_discovery_info;rmw_dds_common::msg::dds_::ParticipantEntitiesInfo_;Fuzzy
→˓{Level(20) TopicQoS{TRANSIENT_LOCAL;RELIABLE;SHARED;depth(5000)}}};SpecificEndpointQoS
→˓{Partitions{};OwnershipStrength{0}};Active;ParticipantId{SimpleParticipant}}.
New endpoint discovered: Endpoint{01.0f.b8.d9.b6.3a.7d.95.01.00.00.00|0.0.2.4;reader;
→˓DdsTopic{ros_discovery_info;rmw_dds_common::msg::dds_::ParticipantEntitiesInfo_;Fuzzy
→˓{Level(20) TopicQoS{TRANSIENT_LOCAL;RELIABLE;SHARED;depth(5000)}}};SpecificEndpointQoS
→˓{Partitions{};OwnershipStrength{0}};Active;ParticipantId{SimpleParticipant}}.
...
New endpoint discovered: Endpoint{01.0f.b8.d9.b6.3a.7d.95.01.00.00.00|0.0.12.3;writer;
→˓DdsTopic{rt/chatter;std_msgs::msg::dds_::String_;Fuzzy{Level(20) TopicQoS{VOLATILE;
→˓RELIABLE;SHARED;depth(5000)}}};SpecificEndpointQoS{Partitions{};OwnershipStrength{0}};
→˓Active;ParticipantId{SimpleParticipant}}. (continues on next page)

3.16. Echo Example 47

DDS Router Documentation, Release ..

(continued from previous page)

In Endpoint: 01.0f.b8.d9.b6.3a.7d.95.01.00.00.00|0.0.12.3 from Participant: ParticipantId
→˓{SimpleParticipant} in topic: DdsTopic{rt/chatter;std_msgs::msg::dds_::String_;Fuzzy
→˓{Level(0) TopicQoS{VOLATILE;BEST_EFFORT;SHARED;depth(1000)}}} payload received: Payload
→˓{00 01 00 00 0f 00 00 00 48 65 6c 6c 6f 20 57 6f 72 6c 64 3a 20 31 00 00} with␣
→˓specific qos: SpecificEndpointQoS{Partitions{};OwnershipStrength{0}}.
In Endpoint: 01.0f.b8.d9.b6.3a.7d.95.01.00.00.00|0.0.12.3 from Participant: ParticipantId
→˓{SimpleParticipant} in topic: DdsTopic{rt/chatter;std_msgs::msg::dds_::String_;Fuzzy
→˓{Level(0) TopicQoS{VOLATILE;BEST_EFFORT;SHARED;depth(1000)}}} payload received: Payload
→˓{00 01 00 00 0f 00 00 00 48 65 6c 6c 6f 20 57 6f 72 6c 64 3a 20 32 00 00} with␣
→˓specific qos: SpecificEndpointQoS{Partitions{};OwnershipStrength{0}}.
...

3.17 Change Domain Example

The following YAML configuration file configures a DDS Router to create two Simple Participants, one in domain 0
and another in domain 1.

##################################
CONFIGURATION VERSION
version: v3.0 # 0

##################################
ALLOWED TOPICS
Allowing FastDDS and ROS2 HelloWorld demo examples topics

allowlist:
- name: HelloWorldTopic # 1
type: HelloWorld # 1

- name: rt/chatter # 2
type: std_msgs::msg::dds_::String_

##################################
PARTICIPANTS
participants:

##################################
SIMPLE PARTICIPANT DOMAIN 0
This participant subscribes to allowlist topics in DDS Domain 0 and listen every␣
→˓message published in such DDS Domain

- name: SimpleParticipant_domain0 # 3
kind: local # 4
domain: 0 # 5

##################################
SIMPLE PARTICIPANT DOMAIN 1
This participant subscribes to allowlist topics in DDS Domain 1 and listen every␣
→˓message published in such DDS Domain

- name: SimpleParticipant_domain1 # 6
(continues on next page)

48 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

(continued from previous page)

kind: local # 7
domain: 1 # 8

3.17.1 Configuration

Allowed Topics

This section lists the Topics that the DDS Router will route from one Participant to the other. Topic HelloWorldTopic
with datatype HelloWorld, and ROS 2 topic rt/chatter with datatype std_msgs::msg::dds_::String_ will be
forwarded from one domain to the other, allowing different DDS domains to interact with each other.

allowlist:
- name: HelloWorldTopic # 1
type: HelloWorld # 1

- name: rt/chatter # 2
type: std_msgs::msg::dds_::String_

Simple Participant Domain 0

This Participant is configured with a name, a kind and the Domain Id, which is 0 in this case.

- name: SimpleParticipant_domain0 # 3
kind: local # 4
domain: 0 # 5

Simple Participant Domain 1

This Participant is configured with a name, a kind and the Domain Id, which is 1 in this case.

- name: SimpleParticipant_domain1 # 6
kind: local # 7
domain: 1 # 8

3.17.2 Execute example

Please refer to this section for a detailed explanation on how to execute the DDS Router.

Execute with ROS 2 demo nodes

Execute a ROS 2 demo_nodes_cpp talker in domain 0:

ROS_DOMAIN_ID=0 ros2 run demo_nodes_cpp talker

Execute a ROS 2 demo_nodes_cpp listener in domain 1:

ROS_DOMAIN_ID=1 ros2 run demo_nodes_cpp listener

3.17. Change Domain Example 49

DDS Router Documentation, Release ..

Execute DDS Router with this configuration file (available in <path/to/ddsrouter_tool>/share/resources/
configurations/examples/change_domain_allowlist.yaml). Once the DDS Router is running, messages
from talker in domain 0 will be forwarded by the Router to the listener in domain 1, that will print them in stdout.

There is also available an example without allowlist (available in <path/to/ddsrouter_tool>/share/
resources/configurations/examples/change_domain.yaml). In this case, the topics of the DDS network are
dynamically discovered by the DDS Router. Since there is no allowlist, the data from all the topics found are forwarded.

3.18 ROS2 Discovery Server Example

In the following snippet we see a yaml file to configure a DDS Router to create a Simple Participant in domain 0 and
a Local Discovery Server with ROS 2 configuration.

##################################
CONFIGURATION VERSION
version: v3.0 # 0

##################################
ALLOWED TOPICS
Allowing ROS2 HelloWorld demo_nodes topic

allowlist:
- name: rt/chatter # 1
type: std_msgs::msg::dds_::String_ # 1

##################################
PARTICIPANTS
participants:

##################################
SIMPLE PARTICIPANT
This participant will subscribe to topics in allowlist in domain 0 and listen every␣
→˓message published there

- name: SimpleROS2 # 2
kind: local # 3
domain: 0 # 4

##################################
ROS DISCOVERY SERVER
This participant will subscribe to topics in allowlist using Discovery Server protocol␣
→˓as Server

- name: ServerROS2 # 5
kind: local-discovery-server # 6
discovery-server-guid:
ros-discovery-server: true # 7
id: 1 # 8

listening-addresses: # 9
- domain: localhost # 10
port: 11888 # 11

50 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

3.18.1 Configuration

Allowed Topics

In this section are the Topics that the DDS Router will route from one Participant to the other. Topic HelloWorldTopic
with datatype HelloWorld, and ROS 2 topic rt/chatter with datatype std_msgs::msg::dds_::String_ will be
forwarded from one domain to the other, allowing different DDS domains to interact to each other.

allowlist:
- name: rt/chatter # 1
type: std_msgs::msg::dds_::String_ # 1

Simple Participant

This Participant is configured by a name, a kind and the Domain Id, in this case 0.

- name: SimpleROS2 # 2
kind: local # 3
domain: 0 # 4

Discovery Server Participant

This Participant is configured by a name, a kind and a listening addresses where Discovery Server will expect metatraffic
data from clients.

- name: ServerROS2 # 5
kind: local-discovery-server # 6
discovery-server-guid:
ros-discovery-server: true # 7
id: 1 # 8

listening-addresses: # 9
- domain: localhost # 10
port: 11888 # 11

3.18.2 Execute example

For a detailed explanation on how to execute the DDS Router, refer to this section. Execute a ROS 2 demo_nodes_cpp
talker in domain 0:

ROS_DOMAIN_ID=0 ros2 run demo_nodes_cpp talker

Execute a ROS 2 demo_nodes_cpp listener using Discovery Server as Discovery Protocol:

ROS_DISCOVERY_SERVER=";127.0.0.1:11888" ros2 run demo_nodes_cpp listener

Execute DDS Router with this configuration file (available in <path/to/ddsrouter_tool>/share/resources/
configurations/examples/ros_discovery_server.yaml). Once the DDS Router is running, messages from
talker in domain 0 will be forwarded by the Router to the listener using Discovery Server, that will print them in
stdout.

3.18. ROS2 Discovery Server Example 51

DDS Router Documentation, Release ..

3.19 WAN Example

In the following snippet we see a yaml file to configure a DDS Router to create a Simple Participant in domain 0 and
a WAN Participant.

##################################
CONFIGURATION VERSION
version: v3.0 # 0

##################################
ALLOWED TOPICS
Allowing FastDDS and ROS2 HelloWorld demo examples topics

allowlist:
- name: HelloWorldTopic # 1
type: HelloWorld # 1

- name: rt/chatter # 2
type: std_msgs::msg::dds_::String_

##################################
PARTICIPANTS
participants:

##################################
SIMPLE PARTICIPANT
This participant will subscribe to topics in allowlist in domain 0 and listen every␣
→˓message published there

- name: SimpleParticipant # 3
kind: local # 4
domain: 0 # 5

##################################
WAN SERVER
This participant will subscribe to topics in allowlist and connect to clients through␣
→˓Initial Peers.

- name: WANServer # 6
kind: wan # 7
listening-addresses: # 8
- ip: 1.1.1.1 # 9
port: 11666 # 10
transport: udp # 11

52 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

3.19.1 Configuration

Allowed Topics

In this section are the Topics that the DDS Router will route from one Participant to the other. Topic HelloWorldTopic
with datatype HelloWorld, and ROS 2 topic rt/chatter with datatype std_msgs::msg::dds_::String_ will be
forwarded from one domain to the other, allowing different DDS domains to interact to each other.

allowlist:
- name: HelloWorldTopic # 1
type: HelloWorld # 1

- name: rt/chatter # 2
type: std_msgs::msg::dds_::String_

Simple Participant

This Participant is configured by a name, a kind and the Domain Id, in this case 0.

- name: SimpleParticipant # 3
kind: local # 4
domain: 0 # 5

WAN Participant Server

This Participant is configured with a name, a kind and the listening addresses where it will expect data from other
remote WAN Participant Clients. This Participant act as a Server only to receive the discovery data from other WAN
Participants. Once the connection has been established, the communication will be symmetrical (except in TCP case,
in which case this Participant will work as TCP Server).

- name: WANServer # 6
kind: wan # 7
listening-addresses: # 8
- ip: 1.1.1.1 # 9
port: 11666 # 10
transport: udp # 11

WAN Participant Client

In order to create a WAN Participant Client, check the configuration file <path/to/ddsrouter_tool>/share/
resources/configurations/examples/wan_client.yaml

- name: WANClient # 6
kind: wan # 7
connection-addresses: # 8
- ip: 1.1.1.1 # 9
port: 11666

listening-addresses: # 10
- ip: 2.2.2.2 # 11
port: 11670 # 12
transport: udp # 13

3.19. WAN Example 53

DDS Router Documentation, Release ..

3.19.2 Execute example

In order to run this example, there must be two different hosts located in different local networks:

• host HA with private IP 192.168.1.2 connected to network router RA with public IP 1.1.1.1.

• host HB with private IP 192.168.2.2 connected to network router RB with public IP 2.2.2.2.

This example could be run in localhost or with two hosts in the same LAN, but it will not use the WAN communication
features of the DDS Router.

Host HA

This host runs the DDS Router WAN Server, which will wait for other WAN Clients to connect to it. Execute DDS
Router using file <path/to/ddsrouter_tool>/share/resources/configurations/examples/wan_server.
yaml. Remember to change the IP and port on the configuration file to the actual public IP of RA, and be sure that
the port forwarding rules are configured in RA so HA is accessible from the outside. Check the following section for
further information about how to configure WAN in DDS Router. Refer to this section for a detailed explanation on
how to execute the DDS Router.

First of all, execute a ROS 2 demo_nodes_cpp listener in domain 0. This listener will discover the Simple Participant
in the DDS Router, but will not receive any data yet.

ROS_DOMAIN_ID=0 ros2 run demo_nodes_cpp listener

Host HB

This host runs the DDS Router WAN Client, which will connect to the previously launched WAN Server. Execute DDS
Router using file <path/to/ddsrouter_tool>/share/resources/configurations/examples/wan_client.
yaml. Remember to change the IPs and ports on the configuration file to the actual public IPs of RA and RB, and be
sure that port forwarding is configured in RB so HB is accessible from the outside.

In this case, the Simple Participant is configured to use the Domain Id 1, so execute a ROS 2 demo_nodes_cpp talker
in domain 1.

ROS_DOMAIN_ID=1 ros2 run demo_nodes_cpp talker

Result

After executing both DDS Router applications in both hosts, and talker and listener applications, the listener in HA
will start receiving and printing data from the talker in HB. You are communicating DDS via WAN.

Remember that the Participants in every DDS Router could be configured as any Participant Kind, allowing to use local
Discovery Server, connect to several domains in the same LAN, connect to several WANs, etc. Endless Possibilities.
Just remember uncle Ben’s words: with great power comes great responsibility.

54 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

3.20 Repeater Example

A DDS Router could work as a TURN Repeater to forward messages by the same Participant. If you are interested in
understanding the use case of a Repeater please refer to the following section Repeater DDS Router.

3.20.1 Configuration

Version

The version attribute is required, as the repeater tag is only supported from v3.0 configuration version.

version: v3.0 # 0

Allowed Topics

This section lists the Topics that the DDS Router will route from one Participant to the other. Topic HelloWorldTopic
with datatype HelloWorld, and ROS 2 topic rt/chatter with datatype std_msgs::msg::dds_::String_ will be
forwarded from one domain to the other, allowing different DDS domains to interact with each other.

allowlist:
- name: HelloWorldTopic # 1
type: HelloWorld # 1

- name: rt/chatter # 2
type: std_msgs::msg::dds_::String_

Repeater Participant

The Repeater Participant is the one that will be used to forward messages by the same Participant. It must be a WAN
Participant and be configured as so with WAN configuration.

- name: RepeaterParticipant # 3
kind: wan # 4
repeater: true # 5
listening-addresses:
- domain: "server.domain.com"
port: 11666
transport: tcp

Client Participants

Every Client can connect to a Repeater Participant as if it was a normal WAN Participant. The Repeater admits as
many edge DDS Router connections as desired, so several DDS Router can use the same or similar configuration to
communicate across it.

- name: Client # 5
kind: wan # 6
connection-addresses:
- domain: "server.domain.com"

(continues on next page)

3.20. Repeater Example 55

DDS Router Documentation, Release ..

(continued from previous page)

port: 11666
transport: tcp

3.20.2 Execute example

Please refer to this section for a detailed explanation on how to execute the DDS Router.

Execute with ROS 2 demo nodes

In order to run this example, there must be three different hosts located in different local networks:

• host HA with private IP 192.168.1.2 connected to network router RA with public IP 1.1.1.1.

• host HB with private IP 192.168.2.2 connected to network router RB with public IP 2.2.2.2.

• host HC with private IP 192.168.2.3 connected to network router RC with public IP 3.3.3.3.

This example could be run in localhost or with two hosts in the same LAN, but it will not use the WAN communication
features of the DDS Router.

Host HA

This host runs the DDS Router Repeater Server, which will receive data from both edges and redirect the messages be-
tween them. Execute DDS Router using file <path/to/ddsrouter_tool>/share/resources/configurations/
examples/repeater.yaml. Remember to change the IP and port on the configuration file to the actual public IP of
RA, and be sure that the port forwarding rules are configured in RA so HA is accessible from the outside.

Hosts HB and HC

These hosts run the DDS Router WAN Clients, which will connect to the previously launched Repeater Server.
Execute DDS Router using file <path/to/ddsrouter_tool>/share/resources/configurations/examples/
wan_client.yaml. Remember to change the IPs and ports on the configuration file to the actual public IPs of RA and
RB. In this example the port forwarding is not required, as the Repeater will allow the communication through
it, and TCP protocol is being used..

Both clients can execute ROS 2 demo nodes, which will publish and subscribe in topic rt/chatter. Execute a talker
in one of them and a listener in the other. It is recommended to use different ROS_DOMAIN_ID in each node, so in case
both nodes are accessible (under same network) no loop is created. In order to do so, change the YAML configuration
files to use different domains, and use the following ROS2 commands:

Hb
ROS_DOMAIN_ID=0 ros2 run demo_nodes_cpp talker

Hc
ROS_DOMAIN_ID=1 ros2 run demo_nodes_cpp listener

56 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

Result

After executing the three DDS Router applications in hosts, and talker and listener applications, the listener in HC will
start receiving and printing data from the talker in HB. You are communicating DDS via WAN.

Note: If HB can access HC due to port forwarding or because both are under the same network, the listener will
receive duplicated messages, as one of them will arrive from HB and the other from HA.

3.21 WAN communication over TCP

• Prerequisites

– Hardware requirements

– Software requirements

• Deployment on Net A

– Running Fast DDS Subscriber

– Running DDS Router Net A

• Deployment on Net B

– Running Fast DDS Publisher

– Running the DDS Router Net B

• Results

This tutorial covers the first steps in setting up a WAN DDS communication over TCP. More specifically, we will run a
DDS Subscriber on a machine deployed on a local network A and a DDS Publisher on a machine deployed on a local
network B. Both DDS entities will communicate over the Internet by means of the DDS Router.

Warning: This tutorial is intended for WAN communication. However, if there is only access to a LAN commu-
nication, it is possible to follow the tutorial by changing the DDS Domain Id so DDS entities in LAN A use default
Domain (0) and those in LAN B use DDS Domain 1. This way the DDS entities are logically isolated and will not
discovery other entities out of their DDS Domain.

The image below describes the scenario presented in this tutorial.

Several key elements can be observed in it:

1. Fast DDS Subscriber and Fast DDS Publisher. The application used for this tutorial is the BasicHelloWorldEx-
ample. The BasicHelloWorldExample is a Fast DDS application that implements a subscriber and a publisher,

3.21. WAN communication over TCP 57

DDS Router Documentation, Release ..

to which a configuration of basic DDS and QoS parameters such as DDS domain, transport, communication
reliability, among others, can be applied.

1. DDS Router. eProsima DDS Router is an end-user software application that enables the connection of dis-
tributed DDS networks. That is, DDS entities such as publishers and subscriber deployed in one geographic
location and using a dedicated local network will be able to communicate with other DDS entities deployed in
different geographic areas on their own dedicated local networks as if they were all on the same network through
the use of DDS Router.

This example presents two routers that enable Internet communication:

• DDS Router Net A. This is the DDS Router that is deployed on LAN A and configured as TCP client. This
way it is possible for the robot to communicate out-of-the-box with an external DDS Router configured as
TCP server.

• DDS Router Net B. It plays the server role in the communication. It will expose a public network address
to which client DDS Routers connect to establish communication.

It is important to mention that there is no correlation between DDS Publisher and Subscriber and TCP client
and server. That is, the functionality of the DDS entity is independent of its behavior in TCP communication.
Thus, although one DDS Router acts as a TCP client and another as a TCP server, both share information in both
directions of communication.

3.21.1 Prerequisites

Hardware requirements

This tutorial will require two machines (Deploymen Net A and Deploymen Net B) deployed on different networks (LAN
A and LAN B). It is possible to simulate the scenario by deploying everything needed on the same machine and two
virtual networks but let’s focus on the case of a real deployment.

Software requirements

You have two options:

1. Install all components individually on each of the machines. If you follow this option, you will need to install:

• Fast DDS

• Fast DDS BasicHelloWorldExample

• DDS Router

2. Use the Fast DDS Suite. This is a publicly available Docker image that contains all the software needed for this
tutorial. You can download this Docker image from the eProsima downloads website.

To load this image into your Docker repository, from a terminal run

$ docker load -i ubuntu-fastdds-suite:<FastDDS-Version>.tar

You can run this Docker container as follows

$ docker run --net=host -it ubuntu-fastdds-suite:<FastDDS-Version>

58 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/installation/binaries/binaries_linux.html
https://github.com/eProsima/Fast-DDS/tree/master/examples/cpp/dds/BasicConfigurationExample
https://fast-dds.docs.eprosima.com/en/latest/docker/fastdds_suite/fast_dds_suite.html
https://www.eprosima.com/index.php/downloads-all

DDS Router Documentation, Release ..

3.21.2 Deployment on Net A

First, let’s deploy the Fast DDS Subscriber and DDS Router Net A on a machine on LAN A.

Running Fast DDS Subscriber

1. Run a Docker container using the Fast DDS Suite image.

docker run --net=host -it ubuntu-fastdds-suite:<FastDDS-Version>

1. Run the Fast DDS Subscriber executing the following commands:

goToExamples
./dds/BasicConfigurationExample/bin/BasicConfigurationExample subscriber --
→˓transport udp

Running DDS Router Net A

As you know, DDS Router is configured through a YAML configuration file. Therefore, since we are going to run DDS
Router from a Docker container, this file must be shared so that it is accessible within the container.

Let’s create first the DDS Router configuration file. It will look like the one shown below.

version: v3.0

participants:

- name: DDS_LAN_A
kind: local

- name: Router_Client
kind: wan
connection-addresses:
- ip: 123.123.123.123
port: 45678
transport: tcp

Next, it is briefly explained the most relevant aspects of this configuration file.

The participants are the interfaces of the DDS Router to communicate with other networks. In this case, we have
two participants:

• local: this is a simple participant that communicates with all DDS entities it finds in the default DDS Domain,
domain 0. For more information about this participant please refer to the Simple Participant section of this
documentation.

• wan: it is a participant designed for WAN communication or the communication between two DDS Routers.
It uses the Fast DDS Initial Peers configuration to establish a point-to-point communication between two DDS
entities, two DDS Routers in this case. For now it is not necessary to know more about the details of this
configuration as you only need to configure the connection address of the DDS Router.

For the DDS Router Net A, a connection address shall be defined which must be the same as the one exposed by
the DDS Router Net B. There are some relevant configurations within this connection address:

– connection-addresses: defines the IP (ip) and port (port) of the network addresses to which it con-
nects, and the transport protocol (transport) to be used in the communication, TCP in this case.

3.21. WAN communication over TCP 59

https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/simple.html#initial-peers

DDS Router Documentation, Release ..

Note: In this case, the DDS Router will forward all topics found in the LAN A DDS network. However, it is im-
portant to mention that the DDS topics relayed by the DDS Router can be filtered by configuring the allowlist and
blocklist. If this is the case please refer to the Topic filtering documentation for information on how to do this.

To finish this step, run the DDS Router with the configuration file created as an argument.

docker run --net=host -it -v <path/to/file>/ddsrouter_net_A.yaml:/ddsrouter_net_A.yaml␣
→˓ubuntu-fastdds-suite:<FastDDS-Version>
ddsrouter -c /ddsrouter_net_A.yaml

The following figure summarizes the deployment on LAN A.

3.21.3 Deployment on Net B

Running Fast DDS Publisher

1. Run a Docker container using the Fast DDS Suite image.

docker run --net=host -it ubuntu-fastdds-suite:<FastDDS-Version>

1. Run the Fast DDS Publisher executing the following commands:

WAN

goToExamples
./dds/BasicConfigurationExample/bin/BasicConfigurationExample publisher \

--interval 1000 --transport udp

LAN

goToExamples
./dds/BasicConfigurationExample/bin/BasicConfigurationExample publisher \

--interval 1000 --transport udp --domain 1

60 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

Note: As stated here, change the DDS Domain Id if running the edge and cloud applications on the same LAN.

Running the DDS Router Net B

Configure transversal NAT on the network router

The first thing to do before starting to configure DDS Router is to configure the network router to allow a remote
communication from the Internet to reach a specific device on the LAN, more specifically to expose an IP address and
a port to the network that will be used by our DDS Router application.

This configuration will depend on your network router, but it should be similar to the one shown in the following image.

Configure the DDS Router Net B

The DDS Router Net B configuration file is quite similar to the DDS Router Net A configuration file, as can be seen
below:

WAN

version: v3.0

participants:
(continues on next page)

3.21. WAN communication over TCP 61

DDS Router Documentation, Release ..

(continued from previous page)

- name: DDS_LAN_B
kind: local

- name: Router_Server
kind: wan
listening-addresses:
- ip: 123.123.123.123
port: 45680
external-port: 45678
transport: tcp

LAN

version: v3.0

participants:

- name: DDS_LAN_B
kind: local
domain: 1

- name: Router_Server
kind: wan
listening-addresses:
- ip: 123.123.123.123
port: 45678
transport: tcp

Note: As stated here, set the DDS Domain Id on the local participant in order to discover the Fast DDS Publisher.

In this case there are also two participants, two communication interfaces for the DDS Router. The first one communi-
cates the DDS Router with any DDS entity, while the second one enables to establish a communication channel with
another DDS Router.

Even so there are some differences in the second participant that are worth mentioning. This participant sets a listening
address (listening-addresses), rather than a connection address. This is because it is the participant that waits for
incoming communications since it has this network address exposed and accessible from the Internet.

To finish, run the DDS Router Net B with the above configuration.

docker run --net=host -it -v <path/to/file>/ddsrouter_net_B.yaml:/ddsrouter_net_B.yaml␣
→˓ubuntu-fastdds-suite:<FastDDS-Version>
ddsrouter -c /ddsrouter_net_B.yaml

The following figure summarizes the deployment on LAN B.

62 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

3.21.4 Results

If all the steps in this tutorial have been followed, the Fast DDS Subscriber on Deployment Net A should start receiving
samples and prompting the following traces:

Message HelloWorld 10 RECEIVED
Message HelloWorld 11 RECEIVED
Message HelloWorld 12 RECEIVED
Message HelloWorld 13 RECEIVED
Message HelloWorld 14 RECEIVED

3.22 ROS 2 and Kubernetes

Apart from plain LAN-to-LAN communication, Cloud environments such as container-oriented platforms have also
been present throughout the DDS Router design phase. In this walk-through example, we will set up both a Kubernetes
(K8s) network and a local environment in order to establish communication between a pair of ROS nodes, one sending
messages from a LAN (talker) and another one (listener) receiving them in the Cloud. This will be accomplished by
having a DDS Router instance at each side of the communication.

3.22. ROS 2 and Kubernetes 63

DDS Router Documentation, Release ..

3.22.1 Local setup

The local instance of DDS Router (local router) only requires to have a Simple Participant, and a WAN Participant that
will play the client role in the discovery process of remote participants (see Initial Peers discovery mechanism).

After having acknowledged each other’s existence through Simple DDS discovery mechanism (multicast communica-
tion), the local participant will start receiving messages published by the ROS 2 talker node, and will then forward
them to the WAN participant. Following, these messages will be sent to another participant hosted on a K8s cluster to
which it connects via WAN communication over UDP/IP.

Following is a representation of the above-described scenario:

Local router

The configuration file used by the local router will be the following:

local-ddsrouter.yaml

version: v3.0

allowlist:
- name: rt/chatter
type: std_msgs::msg::dds_::String_

participants:

- name: SimpleParticipant
kind: local
domain: 0

- name: LocalWAN
kind: wan
listening-addresses: # Needed for UDP communication
- ip: 3.3.3.3 # LAN public IP
port: 30003
transport: udp

(continues on next page)

64 Chapter 3. Structure of the documentation

https://fast-dds.docs.eprosima.com/en/latest/fastdds/discovery/simple.html

DDS Router Documentation, Release ..

(continued from previous page)

connection-addresses:
- ip: 2.2.2.2 # Public IP exposed by the k8s cluster to reach the cloud␣

→˓DDS-Router
port: 30002
transport: udp

Note that the simple participant will be receiving messages sent in DDS domain 0. Also note that, due to the choice of
UDP as transport protocol, a listening address with the LAN public IP address needs to be specified for the local WAN
participant, even when behaving as client in the participant discovery process. Make sure that the given port is reachable
from outside this local network by properly configuring port forwarding in your Internet router device. The connection
address points to the remote WAN participant deployed in the K8s cluster. For further details on how to configure WAN
communication, please have a look at WAN Configuration and WAN Participant Configuration Example.

Note: As an alternative, TCP transport may be used instead of UDP. This has the advantage of not requiring to set a
listening address in the local router’s WAN participant (TCP client), so there is no need to fiddle with the configuration
of your Internet router device.

To launch the local router, execute:

ddsrouter --config-path local-ddsrouter.yaml

Talker

This example will make use of ROS 2 galactic with demo-nodes-cpp package installed. If not already present in your
system, you may choose any of the available options to install ROS galactic, or even consider directly using a distributed
Docker image. Just make sure the resulting environment is prepared to utilize eProsima Fast DDS as middleware (see
Working with eProsima Fast DDS).

Once ROS 2 is installed, start publishing messages in DDS domain 0 by executing:

RMW_IMPLEMENTATION=rmw_fastrtps_cpp ros2 run demo_nodes_cpp talker

3.22.2 Kubernetes setup

Two different deployments will be used for this example, each in a different K8s pod. The DDS Router cloud instance
(cloud router) consists of two participants:

• A WAN Participant that receives the messages coming from our LAN through the aforementioned UDP com-
munication channel.

• A Local Discovery Server (local DS) that propagates them to a ROS 2 listener node hosted in a different K8s
pod.

The choice of a Local Discovery Server instead of a Simple Participant to communicate with the listener has to do with
the difficulty of enabling multicast routing in cloud environments.

The described scheme is represented in the following figure:

In addition to the two mentioned deployments, two K8s services are required in order to direct dataflow to each of the
pods. A LoadBalancer will forward messages reaching the cluster to the WAN participant of the cloud router, and a
ClusterIP service will be in charge of delivering messages from the local DS to the listener pod. Following are the
settings needed to launch these services in K8s:

3.22. ROS 2 and Kubernetes 65

https://docs.ros.org/en/galactic/Installation.html
https://hub.docker.com/_/ros
https://docs.ros.org/en/galactic/Installation/DDS-Implementations/Working-with-eProsima-Fast-DDS.html
https://kubernetes.io/docs/concepts/services-networking/service/

DDS Router Documentation, Release ..

kind: Service
apiVersion: v1
metadata:
name: ddsrouter
labels:
app: ddsrouter

spec:
ports:
- name: UDP-30002
protocol: UDP
port: 30002
targetPort: 30002

selector:
app: ddsrouter

type: LoadBalancer

kind: Service
apiVersion: v1
metadata:
name: local-ddsrouter

spec:
ports:
- name: UDP-30001
protocol: UDP
port: 30001
targetPort: 30001

selector:
app: ddsrouter

clusterIP: 192.168.1.11 # Private IP only reachable within the k8s cluster to␣
→˓communicate with the ddsrouter application
type: ClusterIP

Note: An Ingress needs to be configured for the LoadBalancer service to make it externally-reachable. In this example
we consider the assigned public IP address to be 2.2.2.2.

66 Chapter 3. Structure of the documentation

https://kubernetes.io/docs/concepts/services-networking/ingress/

DDS Router Documentation, Release ..

The configuration file used for the cloud router will be provided by setting up a ConfigMap:

kind: ConfigMap
apiVersion: v1
metadata:
name: ddsrouter-config

data:
ddsrouter.config.file: |-
version: v3.0

allowlist:
- name: rt/chatter
type: std_msgs::msg::dds_::String_

participants:

- name: LocalDiscoveryServer
kind: local-discovery-server
discovery-server-guid:
ros-discovery-server: true
id: 1

listening-addresses:
- ip: 192.168.1.11 # Private IP only reachable within the k8s cluster to␣

→˓communicate with the ddsrouter application
port: 30001
transport: udp

- name: CloudWAN
kind: wan
listening-addresses:
- ip: 2.2.2.2 # Public IP exposed by the k8s cluster to reach the␣

→˓cloud DDS-Router
port: 30002
transport: udp

Following is a representation of the overall K8s cluster configuration:

3.22. ROS 2 and Kubernetes 67

https://kubernetes.io/docs/concepts/configuration/configmap/

DDS Router Documentation, Release ..

DDS-Router deployment

The cloud router is launched from within a Docker image, which uses as configuration file the one hosted in the pre-
viously set up ConfigMap. This Docker image needs to be built and made available to the K8s cluster for using DDS
Router, which can be accomplished by providing the following Dockerfile. If willing to see log messages in STDOUT,
use Dockerfile instead. Assuming the name of the generated Docker image is ddsrouter:main, the cloud router
will then be deployed with the following settings:

kind: Deployment
apiVersion: apps/v1
metadata:
name: ddsrouter
labels:
app: ddsrouter

spec:
replicas: 1
selector:
matchLabels:
app: ddsrouter

template:
metadata:
labels:
app: ddsrouter

spec:
volumes:
- name: config
configMap:
name: ddsrouter-config
items:
- key: ddsrouter.config.file
path: DDSROUTER_CONFIGURATION.yaml

containers:
- name: ddsrouter
image: ddsrouter:main
ports:

- containerPort: 30001
protocol: UDP

- containerPort: 30002
protocol: UDP

volumeMounts:
- name: config
mountPath: /ddsrouter/resources

restartPolicy: Always

68 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

Listener deployment

A suitable Docker image must also be provided in the context of the cluster in order to use ROS 2. We will use
ros:galactic as basis for this image, install demo-nodes-cpp, and include a parser that will allow us to specify the
port and IP address of the local DS. This can be achieved by using the following Dockerfile and entrypoint:

FROM ros:galactic

SHELL ["/bin/bash", "-c"]

Install demo-nodes-cpp
RUN source /opt/ros/$ROS_DISTRO/setup.bash && \

apt update && \
apt install -y ros-$ROS_DISTRO-rmw-fastrtps-cpp && \
apt install -y ros-$ROS_DISTRO-demo-nodes-cpp

Set Fast DDS as middleware
ENV RMW_IMPLEMENTATION=rmw_fastrtps_cpp

COPY ./run.bash /
RUN chmod +x /run.bash

Setup entrypoint
ENTRYPOINT ["/run.bash"]

#!/bin/bash

if [[$1 == "listener"]]
then

NODE="listener"
else

NODE="talker"
fi

SERVER_IP=$2
SERVER_PORT=$3

Setup environment
source "/opt/ros/$ROS_DISTRO/setup.bash"

echo "Starting ${NODE} as client of Discovery Server ${SERVER_IP}:${SERVER_PORT}"
ROS_DISCOVERY_SERVER=";${SERVER_IP}:${SERVER_PORT}" ros2 run demo_nodes_cpp ${NODE}

Now, assuming the name of the built image is ros2-demo-nodes:galactic, the listener pod can be deployed by
providing the following configuration:

kind: Deployment
apiVersion: apps/v1
metadata:
name: ros2-galactic-listener
labels:
app: ros2-galactic-listener

spec:
(continues on next page)

3.22. ROS 2 and Kubernetes 69

DDS Router Documentation, Release ..

(continued from previous page)

replicas: 1
selector:
matchLabels:
app: ros2-galactic-listener

template:
metadata:
labels:
app: ros2-galactic-listener

spec:
containers:
- name: ros2-demo-nodes
image: ros2-demo-nodes:galactic
args:
- listener
- 192.168.1.11
- '30001'

restartPolicy: Always

Once all these components are up and running, communication should have been established between talker and listener
nodes, so that messages finally manage to reach the listener pod and get printed in its STDOUT.

Feel free to interchange the locations of the ROS nodes by slightly modifying the provided configuration files, hosting
the talker in the K8s cluster while the listener runs in our LAN.

3.23 Repeater DDS Router

A DDS Router could work as a TURN Repeater. This means that a DDS Router can be used to repeat messages
between networks.

3.23.1 Use case

The use of a TURN Server is very useful in the following scenarios:

• NAT Traversal: If the edge devices are under different NATs, they cannot access each other if no ports are
opened in their respective internet access points.

• Unreachable Network: If edge devices work under different networks (e.g. using different transport protocols,
connected in different private networks, etc.) cannot reach each other.

The following figure exemplifies these use cases. When the communication between edge routers is not possible, a
Repeater can be set in the middle to forward data and make the communication possible.

70 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

3.23.2 How to configure

This DDS Router configuration is very simple, as all it needs is a WAN Participant and adding to its configuration
the tag repeater: true. There could be more Participants in this DDS Router and topic filtering is also available. The
Repeater Participant only works as other normal Participant, with the particularity that resend forward the data that
receives.

In order to see an example of this configuration, access to the following example Repeater Example.

3.24 Linux installation from sources

The instructions for installing the DDS Router application from sources and its required dependencies are provided in
this page. It is organized as follows:

• Dependencies installation

– Requirements

– Dependencies

• Colcon installation

• CMake installation

– Local installation

– Global installation

• Run an application

3.24. Linux installation from sources 71

DDS Router Documentation, Release ..

3.24.1 Dependencies installation

DDS Router depends on eProsima Fast DDS library and certain Debian packages. This section describes the instruc-
tions for installing DDS Router dependencies and requirements in a Linux environment from sources. The following
packages will be installed:

• foonathan_memory_vendor, an STL compatible C++ memory allocation library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

• cmake_utils, an eProsima utils library for CMake.

• cpp_utils, an eProsima utils library for C++.

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

Requirements

The installation of DDS Router in a Linux environment from sources requires the following tools to be installed in the
system:

• CMake, g++, pip, wget and git

• Colcon [optional]

• Gtest [for test only]

• PyYAML [for YAML Validator only]

• jsonschema [for YAML Validator only]

CMake, g++, pip, wget and git

These packages provide the tools required to install DDS Router and its dependencies from command line. Install
CMake, g++, pip, wget and git using the package manager of the appropriate Linux distribution. For example, on
Ubuntu use the command:

sudo apt install cmake g++ pip wget git

Colcon

colcon is a command line tool based on CMake aimed at building sets of software packages. Install the ROS 2 devel-
opment tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

72 Chapter 3. Structure of the documentation

https://cmake.org
https://gcc.gnu.org/
https://pypi.org/project/pip/
https://www.gnu.org/software/wget/
https://git-scm.com/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

DDS Router Documentation, Release ..

Gtest

Gtest is a unit testing library for C++. By default, DDS Router does not compile tests. It is possible to activate them
with the opportune CMake options when calling colcon or CMake. For more details, please refer to the CMake options
section. For a detailed description of the Gtest installation process, please refer to the Gtest Installation Guide.

It is also possible to clone the Gtest Github repository into the DDS Router workspace and compile it with colcon as a
dependency package. Use the following command to download the code:

git clone --branch release-1.11.0 https://github.com/google/googletest src/googletest-
→˓distribution

PyYAML

PyYAML is a YAML parser and emitter for Python.

It is used by the DDS-Router YAML Validator for loading the content of configuration files.

Install pyyaml by executing the following command:

pip3 install -U pyyaml

jsonschema

jsonschema is an implementation of the JSON Schema specification for Python.

It is used by the DDS-Router YAML Validator for performing validation of configuration files against a given JSON
schema.

Install jsonschema by executing the following command:

pip3 install -U jsonschema

Dependencies

DDS Router has the following dependencies, when installed from sources in a Linux environment:

• Asio and TinyXML2 libraries

• OpenSSL

• yaml-cpp

• eProsima dependencies

3.24. Linux installation from sources 73

https://github.com/google/googletest
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://github.com/google/googletest
https://github.com/google/googletest
https://colcon.readthedocs.io/en/released/
https://pyyaml.org/
https://python-jsonschema.readthedocs.io/

DDS Router Documentation, Release ..

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. Install these libraries using the package
manager of the appropriate Linux distribution. For example, on Ubuntu use the command:

sudo apt install libasio-dev libtinyxml2-dev

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Install
OpenSSL using the package manager of the appropriate Linux distribution. For example, on Ubuntu use the com-
mand:

sudo apt install libssl-dev

yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Router application to
parse the provided configuration files. Install yaml-cpp using the package manager of the appropriate Linux distribution.
For example, on Ubuntu use the command:

sudo apt install libyaml-cpp-dev

eProsima dependencies

If it already exists in the system an installation of Fast DDS library with version greater than 2.4.0, just source this
library when building the DDS Router application by using the command:

source <fastdds-installation-path>/install/setup.bash

In other case, just download Fast DDS project from sources and build it together with DDS Router using colcon as it
is explained in section Colcon installation.

3.24.2 Colcon installation

1. Create a DDS-Router directory and download the .repos file that will be used to install DDS Router and its
dependencies:

mkdir -p ~/DDS-Router/src
cd ~/DDS-Router
wget https://raw.githubusercontent.com/eProsima/DDS-Router/main/ddsrouter.repos
vcs import src < ddsrouter.repos

Note: In case there is already a Fast DDS installation in the system it is not required to download and build
every dependency in the .repos file. It is just needed to download and build the DDS Router project having
sourced its dependencies. Refer to section eProsima dependencies in order to check how to source Fast DDS
library.

74 Chapter 3. Structure of the documentation

https://www.openssl.org/

DDS Router Documentation, Release ..

2. Build the packages:

colcon build

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

3.24.3 CMake installation

This section explains how to compile DDS Router with CMake, either locally or globally.

Local installation

1. Create a DDS-Router directory where to download and build DDS Router and its dependencies:

mkdir -p ~/DDS-Router/src
mkdir -p ~/DDS-Router/build
cd ~/DDS-Router
wget https://raw.githubusercontent.com/eProsima/DDS-Router/main/ddsrouter.repos
vcs import src < ddsrouter.repos

2. Compile all dependencies using CMake.

• Foonathan memory

cd ~/DDS-Router
mkdir build/foonathan_memory_vendor
cd build/foonathan_memory_vendor
cmake ~/DDS-Router/src/foonathan_memory_vendor -DCMAKE_INSTALL_PREFIX=~/
→˓DDS-Router/install -DBUILD_SHARED_LIBS=ON
cmake --build . --target install

• Fast CDR

cd ~/DDS-Router
mkdir build/fastcdr
cd build/fastcdr
cmake ~/DDS-Router/src/fastcdr -DCMAKE_INSTALL_PREFIX=~/DDS-Router/
→˓install
cmake --build . --target install

• Fast DDS

cd ~/DDS-Router
mkdir build/fastdds
cd build/fastdds
cmake ~/DDS-Router/src/fastdds -DCMAKE_INSTALL_PREFIX=~/DDS-Router/
→˓install -DCMAKE_PREFIX_PATH=~/DDS-Router/install
cmake --build . --target install

• Dev Utils

3.24. Linux installation from sources 75

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory
https://github.com/eProsima/Fast-CDR
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/dev-utils

DDS Router Documentation, Release ..

CMake Utils
cd ~/DDS-Router
mkdir build/cmake_utils
cd build/cmake_utils
cmake ~/DDS-Router/src/dev-utils/cmake_utils -DCMAKE_INSTALL_PREFIX=~/
→˓DDS-Router/install -DCMAKE_PREFIX_PATH=~/DDS-Router/install
cmake --build . --target install

C++ Utils
cd ~/DDS-Router
mkdir build/cpp_utils
cd build/cpp_utils
cmake ~/DDS-Router/src/dev-utils/cpp_utils -DCMAKE_INSTALL_PREFIX=~/DDS-
→˓Router/install -DCMAKE_PREFIX_PATH=~/DDS-Router/install
cmake --build . --target install

3. Once all dependencies are installed, install DDS Router:

ddsrouter_core
cd ~/DDS-Router
mkdir build/ddsrouter_core
cd build/ddsrouter_core
cmake ~/DDS-Router/src/ddsrouter/ddsrouter_core -DCMAKE_INSTALL_PREFIX=~/DDS-Router/
→˓install -DCMAKE_PREFIX_PATH=~/DDS-Router/install
cmake --build . --target install

ddsrouter_yaml
cd ~/DDS-Router
mkdir build/ddsrouter_yaml
cd build/ddsrouter_yaml
cmake ~/DDS-Router/src/ddsrouter/ddsrouter_yaml -DCMAKE_INSTALL_PREFIX=~/DDS-Router/
→˓install -DCMAKE_PREFIX_PATH=~/DDS-Router/install
cmake --build . --target install

ddsrouter_tool
cd ~/DDS-Router
mkdir build/ddsrouter_tool
cd build/ddsrouter_tool
cmake ~/DDS-Router/src/ddsrouter/tools/ddsrouter_tool -DCMAKE_INSTALL_PREFIX=~/DDS-
→˓Router/install -DCMAKE_PREFIX_PATH=~/DDS-Router/install
cmake --build . --target install

Note: By default, DDS Router does not compile tests. However, they can be activated by downloading and installing
Gtest and building with CMake option -DBUILD_TESTS=ON.

76 Chapter 3. Structure of the documentation

https://github.com/google/googletest

DDS Router Documentation, Release ..

Global installation

To install DDS Router system-wide instead of locally, remove all the flags that appear in the configuration steps of
Fast-CDR, Fast-DDS, and DDS-Router, and change the first in the configuration step of foonathan_memory_vendor
to the following:

-DCMAKE_INSTALL_PREFIX=/usr/local/ -DBUILD_SHARED_LIBS=ON

3.24.4 Run an application

To run the DDS Router application, source the Fast DDS library and execute the executable file that has been installed
in <install-path>/ddsrouter_tool/bin/ddsrouter:

If built has been done using colcon, all projects could be sourced as follows
source install/setup.bash
./<install-path>/ddsrouter_tool/bin/ddsrouter

Be sure that this executable has execute permissions.

3.25 Windows installation from sources

The instructions for installing the DDS Router application from sources and its required dependencies are provided in
this page. It is organized as follows:

• Dependencies installation

– Requirements

– Dependencies

• Colcon installation

• CMake installation

– Local installation

– Global installation

• Run an application

3.25.1 Dependencies installation

DDS Router depends on eProsima Fast DDS library and certain Debian packages. This section describes the instruc-
tions for installing DDS Router dependencies and requirements in a Windows environment from sources. The following
packages will be installed:

• foonathan_memory_vendor, an STL compatible C++ memory allocation library.

• fastcdr, a C++ library that serializes according to the standard CDR serialization mechanism.

• fastrtps, the core library of eProsima Fast DDS library.

• cmake_utils, an eProsima utils library for CMake.

• cpp_utils, an eProsima utils library for C++.

3.25. Windows installation from sources 77

DDS Router Documentation, Release ..

First of all, the Requirements and Dependencies detailed below need to be met. Afterwards, the user can choose whether
to follow either the colcon or the CMake installation instructions.

Requirements

The installation of eProsima Fast DDS in a Windows environment from sources requires the following tools to be
installed in the system:

• Visual Studio

• Chocolatey

• CMake, pip3, wget and git

• Colcon [optional]

• Gtest [for test only]

• PyYAML [for YAML Validator only]

• jsonschema [for YAML Validator only]

Visual Studio

Visual Studio is required to have a C++ compiler in the system. For this purpose, make sure to check the Desktop
development with C++ option during the Visual Studio installation process.

If Visual Studio is already installed but the Visual C++ Redistributable packages are not, open Visual Studio and go to
Tools -> Get Tools and Features and in the Workloads tab enable Desktop development with C++. Finally,
click Modify at the bottom right.

Chocolatey

Chocolatey is a Windows package manager. It is needed to install some of eProsima Fast DDS’s dependencies. Down-
load and install it directly from the website.

CMake, pip3, wget and git

These packages provide the tools required to install eProsima Fast DDS and its dependencies from command line.
Download and install CMake, pip3, wget and git by following the instructions detailed in the respective websites. Once
installed, add the path to the executables to the PATH from the Edit the system environment variables control panel.

Colcon

colcon is a command line tool based on CMake aimed at building sets of software packages. Install the ROS 2 devel-
opment tools (colcon and vcstool) by executing the following command:

pip3 install -U colcon-common-extensions vcstool

Note: If this fails due to an Environment Error, add the --user flag to the pip3 installation command.

78 Chapter 3. Structure of the documentation

https://visualstudio.microsoft.com/
https://chocolatey.org/
https://cmake.org
https://docs.python.org/3/installing/index.html
https://www.gnu.org/software/wget/
https://git-scm.com/
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://colcon.readthedocs.io/en/released/
https://pypi.org/project/vcstool/

DDS Router Documentation, Release ..

Gtest

Gtest is a unit testing library for C++. By default, DDS Router does not compile tests. It is possible to activate them
with the opportune CMake options when calling colcon or CMake. For more details, please refer to the CMake options
section.

Run the following commands on your workspace to install Gtest.

git clone https://github.com/google/googletest.git
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\gtest' -Dgtest_force_shared_crt=ON -
→˓DBUILD_GMOCK=ON ^

-B build\gtest -A x64 -T host=x64 googletest
cmake --build build\gtest --config Release --target install

or refer to the Gtest Installation Guide for a detailed description of the Gtest installation process.

PyYAML

PyYAML is a YAML parser and emitter for Python.

It is used by the DDS-Router YAML Validator for loading the content of configuration files.

Install pyyaml by executing the following command:

pip3 install -U pyyaml

jsonschema

jsonschema is an implementation of the JSON Schema specification for Python.

It is used by the DDS-Router YAML Validator for performing validation of configuration files against a given JSON
schema.

Install jsonschema by executing the following command:

pip3 install -U jsonschema

Dependencies

DDS Router has the following dependencies, when installed from sources in a Windows environment:

• Asio and TinyXML2 libraries

• OpenSSL

• yaml-cpp

• eProsima dependencies

3.25. Windows installation from sources 79

https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-options
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://github.com/google/googletest
https://pyyaml.org/
https://python-jsonschema.readthedocs.io/

DDS Router Documentation, Release ..

Asio and TinyXML2 libraries

Asio is a cross-platform C++ library for network and low-level I/O programming, which provides a consistent asyn-
chronous model. TinyXML2 is a simple, small and efficient C++ XML parser. They can be downloaded directly from
the links below:

• Asio

• TinyXML2

After downloading these packages, open an administrative shell with PowerShell and execute the following command:

choco install -y -s <PATH_TO_DOWNLOADS> asio tinyxml2

where <PATH_TO_DOWNLOADS> is the folder into which the packages have been downloaded.

OpenSSL

OpenSSL is a robust toolkit for the TLS and SSL protocols and a general-purpose cryptography library. Down-
load and install the latest OpenSSL version for Windows at this link. After installing, add the environment variable
OPENSSL_ROOT_DIR pointing to the installation root directory.

For example:

OPENSSL_ROOT_DIR=C:\Program Files\OpenSSL-Win64

yaml-cpp

yaml-cpp is a YAML parser and emitter in C++ matching the YAML 1.2 spec, and is used by DDS Router application to
parse the provided configuration files. From an administrative shell with PowerShell, execute the following commands
in order to download and install yaml-cpp for Windows:

git clone --branch yaml-cpp-0.7.0 https://github.com/jbeder/yaml-cpp
cmake -DCMAKE_INSTALL_PREFIX='C:\Program Files\yamlcpp' -B build\yamlcpp yaml-cpp
cmake --build build\yamlcpp --target install # If building in Debug mode, add --
→˓config Debug

eProsima dependencies

If it already exists in the system an installation of Fast DDS library with version greater than 2.4.0, just source this
library when building the DDS Router application by using the command:

source <fastdds-installation-path>/install/setup.bash

In other case, just download Fast DDS project from sources and build it together with DDS Router using colcon as it
is explained in section Colcon installation.

80 Chapter 3. Structure of the documentation

https://github.com/ros2/choco-packages/releases/download/2020-02-24/asio.1.12.1.nupkg
https://github.com/ros2/choco-packages/releases/download/2020-02-24/tinyxml2.6.0.0.nupkg
https://slproweb.com/products/Win32OpenSSL.html

DDS Router Documentation, Release ..

3.25.2 Colcon installation

Important: Run colcon within a Visual Studio prompt. To do so, launch a Developer Command Prompt from the
search engine.

1. Create a DDS-Router directory and download the .repos file that will be used to install DDS Router and its
dependencies:

mkdir <path\to\user\workspace>\DDS-Router
cd <path\to\user\workspace>\DDS-Router
mkdir src
wget https://raw.githubusercontent.com/eProsima/DDS-Router/main/ddsrouter.repos
vcs import src < ddsrouter.repos

Note: In case there is already a Fast DDS installation in the system it is not required to download and build
every dependency in the .repos file. It is just needed to download and build the DDS Router project having
sourced its dependencies. Refer to section eProsima dependencies in order to check how to source Fast DDS
library.

2. Build the packages:

colcon build

Note: Being based on CMake, it is possible to pass the CMake configuration options to the colcon build command.
For more information on the specific syntax, please refer to the CMake specific arguments page of the colcon manual.

3.25.3 CMake installation

This section explains how to compile DDS Router with CMake, either locally or globally.

Local installation

1. Open a command prompt, and create a DDS-Router directory where to download and build DDS Router and its
dependencies:

mkdir <path\to\user\workspace>\DDS-Router
mkdir <path\to\user\workspace>\DDS-Router\src
mkdir <path\to\user\workspace>\DDS-Router\build
cd <path\to\user\workspace>\DDS-Router
wget https://raw.githubusercontent.com/eProsima/DDS-Router/main/ddsrouter.repos
vcs import src < ddsrouter.repos

2. Compile all dependencies using CMake.

• Foonathan memory

3.25. Windows installation from sources 81

https://cmake.org
https://colcon.readthedocs.io/en/released/reference/verb/build.html#cmake-specific-arguments
https://colcon.readthedocs.io/en/released/
https://cmake.org
https://cmake.org
https://github.com/foonathan/memory

DDS Router Documentation, Release ..

cd <path\to\user\workspace>\DDS-Router
mkdir build\foonathan_memory_vendor
cd build\foonathan_memory_vendor
cmake <path\to\user\workspace>\DDS-Router\src\foonathan_memory_vendor -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install ^

-DBUILD_SHARED_LIBS=ON
cmake --build . --config Release --target install

• Fast CDR

cd <path\to\user\workspace>\DDS-Router
mkdir build\fastcdr
cd build\fastcdr
cmake <path\to\user\workspace>\DDS-Router\src\fastcdr -DCMAKE_INSTALL_
→˓PREFIX=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

• Fast DDS

cd <path\to\user\workspace>\DDS-Router
mkdir build\fastdds
cd build\fastdds
cmake <path\to\user\workspace>\DDS-Router\src\fastdds -DCMAKE_INSTALL_
→˓PREFIX=<path\to\user\workspace>\DDS-Router\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

• Dev Utils

CMake Utils
cd <path\to\user\workspace>\DDS-Router
mkdir build\cmake_utils
cd build\cmake_utils
cmake <path\to\user\workspace>\DDS-Router\src\dev-utils\cmake_utils -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

C++ Utils
cd <path\to\user\workspace>\DDS-Router
mkdir build\cpp_utils
cd build\cpp_utils
cmake <path\to\user\workspace>\DDS-Router\src\dev-utils\cpp_utils -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

3. Once all dependencies are installed, install DDS Router:

ddsrouter_core
cd <path\to\user\workspace>\DDS-Router
mkdir build\ddsrouter_core
cd build\ddsrouter_core

(continues on next page)

82 Chapter 3. Structure of the documentation

https://github.com/eProsima/Fast-CDR
https://github.com/eProsima/Fast-DDS
https://github.com/eProsima/dev-utils

DDS Router Documentation, Release ..

(continued from previous page)

cmake <path\to\user\workspace>\DDS-Router\src\ddsrouter\ddsrouter_core ^
-DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install -DCMAKE_

→˓PREFIX_PATH=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

ddsrouter_yaml
cd <path\to\user\workspace>\DDS-Router
mkdir build\ddsrouter_yaml
cd build\ddsrouter_yaml
cmake <path\to\user\workspace>\DDS-Router\src\ddsrouter\ddsrouter_yaml -DCMAKE_
→˓INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

ddsrouter_tool
cd <path\to\user\workspace>\DDS-Router
mkdir build\ddsrouter_tool
cd build\ddsrouter_tool
cmake <path\to\user\workspace>\DDS-Router\src\ddsrouter\tools\ddsrouter_tool -
→˓DCMAKE_INSTALL_PREFIX=<path\to\user\workspace>\DDS-Router\install ^

-DCMAKE_PREFIX_PATH=<path\to\user\workspace>\DDS-Router\install
cmake --build . --config Release --target install

Note: By default, DDS Router does not compile tests. However, they can be activated by downloading and installing
Gtest and building with CMake option -DBUILD_TESTS=ON.

Global installation

To install DDS Router system-wide instead of locally, remove all the flags that appear in the configuration steps of
foonathan_memory_vendor, Fast-CDR, Fast-DDS, and DDS-Router

3.25.4 Run an application

If the DDS Router was compiled using colcon, when running an instance of a DDS Router, the colcon overlay built in
the dedicated DDS-Router directory must be sourced. There are two possibilities:

• Every time a new shell is opened, prepare the environment locally by typing the command:

setup.bat

• Add the sourcing of the colcon overlay permanently, by opening the Edit the system environment variables control
panel, and adding ~/Fast-DDS/install/setup.bat to the PATH.

However, when running an instance of a DDS Router compiled using CMake, it must be linked with its dependencies
where the packages have been installed. This can be done by opening the Edit system environment variables control
panel and adding to the PATH the DDS Router, Fast DDS and Fast CDR installation directories:

• Fast DDS: C:\Program Files\fastrtps

• Fast CDR: C:\Program Files\fastcdr

• DDS Router: C:\Program Files\ddsrouter

3.25. Windows installation from sources 83

https://github.com/google/googletest

DDS Router Documentation, Release ..

3.26 CMake options

eProsima DDS Router provides numerous CMake options for changing the behavior and configuration of DDS Router.
These options allow the developer to enable/disable certain DDS Router settings by defining these options to ON/OFF
at the CMake execution, or set the required path to certain dependencies.

Warning: These options are only for developers who installed eProsima DDS Router following the compilation
steps described in Linux installation from sources.

Option Description Pos-
sible
val-
ues

Default

CMAKE_BUILD_TYPECMake optimization build type. Release
Debug

Release

BUILD_ALL Build the DDS Router application tool ddsrouter. Setting to ON sets to ON
BUILD_TOOL, BUILD_LIBRARY, and BUILD_DOCS.

OFF ON OFF

BUILD_LIBRARYBuild the DDS Router documentation. It is set to ON if BUILD_ALL is set to
ON.

OFF ON ON

BUILD_TOOLBuild the DDS Router documentation. It is set to ON if BUILD_ALL is set to
ON.

OFF ON ON

BUILD_DOCSBuild the DDS Router documentation. It is set to ON if BUILD_ALL is set to
ON.

OFF ON OFF

BUILD_TESTSBuild the DDS Router application and documentation tests. Set-
ting BUILD_TESTS to ON sets BUILD_ALL, BUILD_LIBRARY_TESTS,
BUILD_TOOL_TESTS, and BUILD_DOCS_TESTS to ON.

OFF ON OFF

BUILD_LIBRARY_TESTSBuild the DDS Router library tests. It is set to ON if BUILD_TESTS is set to
ON.

OFF ON OFF

BUILD_TOOL_TESTSBuild the DDS Router application tests. It is set to ON if BUILD_TESTS is set
to ON.

OFF ON OFF

BUILD_DOCS_TESTSBuild the DDS Router documentation tests. It is set to ON if BUILD_TESTS is
set to ON.

OFF ON OFF

LOG_INFO Activate DDS Router execution logs. It is set to ON if CMAKE_BUILD_TYPE is
set to Debug.

OFF ON ON if
Debug OFF
otherwise

ASAN_BUILDActivate address sanitizer build. OFF ON OFF
TSAN_BUILDActivate thread sanitizer build. OFF ON OFF

3.27 Version v1.2.0

This release includes the following CI improvements:

• Add blackbox tests for repeater in WAN case.

• Upgrade deprecated actions.

84 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

3.28 Previous Versions

3.28.1 Version v1.1.0

This release includes the following features:

• New Log Verbosity Argument and Log Filter Argument arguments to configure DDS Router and Fast DDS logs
shown in application.

This release includes the following CI improvements:

• Add Address Sanitizer check to all tests.

• Add Thread Sanitizer check to all tests.

• Compile with -Wall flag all CI jobs.

3.28.2 Version v1.0.0

This is the first stable release of eProsima DDS Router.

This release includes the following major features:

• New QoS Transparency Module.

This release includes the following features:

• New Repeater behaviour, a new configuration to create TURN servers.

• Add RPC support (compatibility with ROS 2 services).

• Timeout argument --timeout to close the application after the time set has passed. Check section Timeout
Argument for more information.

• Add TLS-SNI support.

• Add external port support so internal and external port in network router configuration could be different.

This release includes the following DDS features:

• New Initial Peers Participant that allows to create a fast WAN communication avoiding the Discovery Server
configuration.

• Participants names are set from ParticipantIds.

This release includes the following configuration changes:

• New Configuration Version v3.0 that allow Repeater and initial peers configuration.

• Yaml Validator only validates v3.0 configurations.

• Address supports an external-port value to set this in a listening address.

This release includes the following major changes:

• wan Participant Kind uses now Initial Peers Discovery Protocol, while Discovery Server requires a new Partici-
pant Kind wan-discovery-server.

• Internal packages for utils as ddsrouter_cmake and ddsrouter_utils have been moved to an external repos-
itory.

This release includes the following performance improvements:

• No locking in the Track hot-path.

3.28. Previous Versions 85

https://github.com/eProsima/dev-utils
https://github.com/eProsima/dev-utils

DDS Router Documentation, Release ..

3.28.3 Version v0.4.0

This release includes the following features:

• New YAML Validator, a simple tool to assert the correctness of DDS Router configuration files.

• New Version Argument to show the current version of DDS Router.

This release includes the following improvementes:

• New FastPayloalPool class that will allow unblocking access to shared payloads stored by FastDDS and DDS
Router. This slightly improves the performance of the router.

• New ThreadPool class for handling parallel processing. Limit the number of threads spawned by the DDS
Router, improving the performance of the application. The user can set-up this parameter on the YAML config-
uration Specs Configuration.

This release includes the following major changes:

• New auxiliary package cmake_utils to implement general CMake functions and tools.

• The internal package ddsrouter_event is joint within the internal package cpp_utils.

This release includes the following minor changes:

• Refactor all enum to enum class.

This release includes the following Continuous-Integration features:

• New CI workflow to build dependencies nightly. This allows to run the CI faster, as the build is only done for
the ddsrouter packages and not the whole fastdds.

• Add ubuntu 22.04 to platforms in CI.

• Add windows 19 to platforms in CI.

This release fixes the following minor bugs:

• Fix race condition occurred when handling signals (due to concurrent access to SignalManager singleton).

• Bug in TLS Configuration initialization when setting server configuration files.

• Set FastDDS DomainParticipants and Readers listeners after creation to avoid race conditions in entities creation.

3.28.4 Version v0.3.0

This release includes the following major changes:

• New DDS Router library that provides the DDS Router features through a C++ API.

• Division of DDS Router application into several packages.

– ddsrouter_event: C++ library which implements System Operating (SO)-dependent signal handlers.

– cpp_utils: C++ library which implements various utility functions.

– ddsrouter_core: C++ library which implements the DDS Router operation and exports the DDS Router
C++ API.

– ddsrouter_yaml: C++ library to parse the DDS Router yaml configuration files.

– ddsrouter_tool: DDS Router end-user application.

• New dynamic topic discovery feature to automatically discover DDS Topics in a DDS network.

• Allow using wildcard characters to define topics in allowlist and blocklist.

86 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

• Build internal topic tracks via the builtin-topics configuration.

This release includes the following Routing features:

• Apply DDS Topic filtering rules using the allowlist and blocklist lists.

This release includes the following User Interface features:

• Upgrade the yaml configuration file to version 2.0 which breaks compatibility with version 1.0.

• Support for both version 1.0 and version 2.0 of the yaml configuration file, maintaining version 1.0 by default.

• Improve reporting of errors resulting from parsing a malformed yaml configuration file.

This release includes the following Continuous-Integration features:

• Add tests for the yaml parsing library (ddsrouter_yaml).

• Specific testing GitHub actions for each DDS Router package for both Windows and Linux platforms.

This release fixes the following major bugs:

• Fix deadlock between Track and Fast DDS Reader mutex.

• Support any size for in and out messages.

This release fixes the following minor bugs:

• Fix parsing of reload-time executable argument.

• Handle signals in dedicated threads to prevent hangs when terminating execution.

• Fix rare deadlock in EventHandler when destroying and callback called.

This release includes the following Documentation features:

• DDS Router execution from a provided Docker image.

• Update all examples of yaml configuration files to be consistent with the new yaml configuration version.

• High-level repository structure description and developer contribution guidelines.

• Improved and extended Built-in Topics section according to the new dynamic topic discovery functionality.

3.28.5 Version v0.2.0

This release includes the following Configuration features:

• Support TLS over TCP configuration and communication.

• Support IPv6 communication via UDP, TCP and TLS over TCP.

• Support DNS by given Domain Name in configuration instead of an IP address.

• Support keyed topics.

This release includes the following Routing features:

• Zero-Copy data transmission between internal Participants.

This release includes the following User Interface features:

• Shutdown the DDS Router application gracefully sending SIGTERM (kill) or SIGINT (^C) signals.

This release includes the following Continuous-Integration features:

• Add communication tests for UDP, TCP and TLS over TCP WAN cases.

• Extend tool test with more complex configurations.

3.28. Previous Versions 87

DDS Router Documentation, Release ..

• Remove Flaky tests from CI required passing tests.

• Implement a new class to check that no warning or error logs are produced during test executions.

• Add gMock to test libraries.

This release fixes the following major bugs:

• Fix GUID creation when explicit guid is provided.

• Show error when participant ids are duplicated.

This release fixes the following minor bugs:

• Change YAML example configurations to YAML format (instead of JSON) fixing an issue when blank lines were
missing at the end of the file.

• Normalize the error and process exit when failure.

• Fix documentation typos.

3.28.6 Version v0.1.0

This is the first release of eProsima DDS Router.

This release includes several features regarding the routing of DDS data, the DDS Router configuration, the user
interaction with the DDS Router, and the different DDS configurations that the application is able to reproduce.

This release includes the following User Interface features:

• Application executable.

• Application executable arguments.

• Signal handler to close the application.

• FileWatcher thread to watch and reload the configuration file.

• Periodic timer to force reload configuration.

• Application run-time user logs.

• Application run-time debug logs.

• Error handling:

– Error log and exit program when reading configuration fails.

– Error log and exit program when initializing Participants fails.

– Error log and continuing execution when execution error occurs.

This release includes the following Configuration features:

• Allow to execute the application with a YAML configuration file.

• Support for initial topics in allowlist.

• Support for block topic filters.

• Different Participant configurations:

– Domain Id.

– Discovery Server GuidPrefix.

– Listening addresses.

– Connection addresses.

88 Chapter 3. Structure of the documentation

DDS Router Documentation, Release ..

This release includes the following Routing features:

• Support for routing Topics specified in allowlist regarding Topic name and Topic Type name.

• Support for connecting to new Topics in run-time (by reloading configuration).

• Support for disabling a Topic in run-time.

• Support for enabling a Topic that has been disabled in run-time.

• Route messages of each Participant to all the other Participants.

• Agnostic to topic data types.

This release includes the following DDS features:

• Allow UDP, TCP and SHM transport communication.

• Allow dynamic discovery of new entities.

• Using eProsima Fast DDS RTPS layer for discovery, publication and subscription.

This release includes the following Participant features:

• Echo Participant.

• Simple Participant, able to connect to a Simple Discovery UDP DDS network.

• Local Discovery Server Participant, able to connect to a local Discovery Server as Client or Server.

• WAN Participant, able to connect to a WAN Discovery Server network as Client or Server.

This release includes the following Examples:

• Echo Example, to monitor a local simple network.

• Domain Change Example, to connect two different domains.

• ROS 2 Discovery Server Example, to connect a regular DDS network with a Discovery Server network using
ROS 2 configuration.

• WAN Example, to connect two DDS networks in different LANs.

This release includes the following Documentation features:

• This same documentation.

3.29 Glossary

LAN Local Area Network

NAT Network Address Translation: Typically an internet router multiplexes all the traffic through a public IP to
several private IPs. Usually, the machines under the router network cannot be accessed from the outside unless
a Port is forwarded in the router configuration, or if such host has previously started a TCP communication with
the message source.

TCP Transmission Control Protocol

TURN Traversal Using Relays around NAT A TURN server is a network element that supports a common point of
redirection of messages. It redirect messages between N nodes connected to it. This is a very common technique
in order to traverse a NAT or an unreachable network.

UDP User Datagram Protocol

WAN Wide Area Network

3.29. Glossary 89

DDS Router Documentation, Release ..

90 Chapter 3. Structure of the documentation

INDEX

D
DataReader, 44
DataWriter, 44
Discovery Server, 44
Domain Id, 44
DomainParticipant, 44

E
Endpoint, 44

G
Guid, 44
GuidPrefix, 44

I
Initial Peers, 45

L
LAN, 89

N
NAT, 89

P
Participant, 44
Participant Kind, 44
Participant Name, 44
Payload, 44

T
TCP, 89
Topic, 45
TURN, 89

U
UDP, 89

W
WAN, 89

91

	Contacts and Commercial support
	Contributing to the documentation
	Structure of the documentation
	Overview
	Contacts and Commercial support
	Contributing to the documentation
	Structure of the documentation
	DDS Router on Windows
	DDS Router on Linux
	Docker image
	Project Overview
	WAN Communication
	Usage Description
	Common Use Cases

	Example of usage
	Launching ShapesDemo
	Router configuration
	Router execution

	User Interface
	Source Dependency Libraries
	Application Arguments
	Help Argument
	Version Argument
	Configuration File Argument
	Reload Time Argument
	Timeout Argument
	Debug Argument
	Log Verbosity Argument
	Log Filter Argument

	Configuration File
	Reload Topics
	File Watcher
	Reload Timer

	Log
	Close Application
	SIGINT
	SIGTERM
	TIMEOUT

	DDS Router Participant
	Participant
	Participant Name
	Participant Kind

	Participant creation
	Participant kinds
	Echo Participant
	Use case
	Kind aliases
	Configuration
	Configuration Example

	Simple Participant
	Use case
	Kind aliases
	Configuration
	Configuration Example

	Local Discovery Server Participant
	Use case
	Kind aliases
	Configuration
	Configuration Example

	Discovery Server WAN Participant
	Use case
	Kind aliases
	Configuration
	WAN Configuration

	Configuration Example

	WAN Participant
	Use case
	Kind aliases
	Configuration
	Repeater
	WAN Configuration

	Configuration Example

	DDS Router Configuration
	Configuration version
	Specs Configuration
	Number of Threads
	Maximum History Depth

	Built-in Topics
	Topic Quality of Service

	Topic Filtering
	Allow topic list (allowlist)
	Block topic list (blocklist)
	Examples of usage
	Dynamic topic discovery example
	Allowlist and blocklist collision

	Participant Configuration
	Domain Id
	Repeater Participant
	Network Address
	External Port
	Discovery Server GuidPrefix
	Discovery Server GuidPrefix by string
	Discovery Server GuidPrefix by Id
	ROS Discovery Server GuidPrefix

	Listening Addresses
	Initial Peers Connection Addresses
	Discovery Server Connection Addresses

	General Example

	WAN Configuration
	NAT Traversal
	Port Forwarding
	External port

	TCP vs UDP
	TLS
	Examples
	TCP Port Forwarding Example
	UDP Port Forwarding Example
	TLS Configuration Example

	YAML Validator
	Nomenclature
	DDS Router nomenclature
	Participant nomenclature

	DDS nomenclature

	Echo Example
	Configuration
	Allowed Topics
	Simple Participant
	Echo Participant

	Execute example
	Execute with Fast DDS HelloWorld Example
	Execute with ROS 2 demo nodes

	Change Domain Example
	Configuration
	Allowed Topics
	Simple Participant Domain 0
	Simple Participant Domain 1

	Execute example
	Execute with ROS 2 demo nodes

	ROS2 Discovery Server Example
	Configuration
	Allowed Topics
	Simple Participant
	Discovery Server Participant

	Execute example

	WAN Example
	Configuration
	Allowed Topics
	Simple Participant
	WAN Participant Server
	WAN Participant Client

	Execute example
	Host HA
	Host HB
	Result

	Repeater Example
	Configuration
	Version
	Allowed Topics
	Repeater Participant
	Client Participants

	Execute example
	Execute with ROS 2 demo nodes
	Host HA
	Hosts HB and HC
	Result

	WAN communication over TCP
	Prerequisites
	Hardware requirements
	Software requirements

	Deployment on Net A
	Running Fast DDS Subscriber
	Running DDS Router Net A

	Deployment on Net B
	Running Fast DDS Publisher
	Running the DDS Router Net B
	Configure transversal NAT on the network router
	Configure the DDS Router Net B

	Results

	ROS 2 and Kubernetes
	Local setup
	Local router
	Talker

	Kubernetes setup
	DDS-Router deployment
	Listener deployment

	Repeater DDS Router
	Use case
	How to configure

	Linux installation from sources
	Dependencies installation
	Requirements
	CMake, g++, pip, wget and git
	Colcon
	Gtest
	PyYAML
	jsonschema

	Dependencies
	Asio and TinyXML2 libraries
	OpenSSL
	yaml-cpp
	eProsima dependencies

	Colcon installation
	CMake installation
	Local installation
	Global installation

	Run an application

	Windows installation from sources
	Dependencies installation
	Requirements
	Visual Studio
	Chocolatey
	CMake, pip3, wget and git
	Colcon
	Gtest
	PyYAML
	jsonschema

	Dependencies
	Asio and TinyXML2 libraries
	OpenSSL
	yaml-cpp
	eProsima dependencies

	Colcon installation
	CMake installation
	Local installation
	Global installation

	Run an application

	CMake options
	Version v1.2.0
	Previous Versions
	Version v1.1.0
	Version v1.0.0
	Version v0.4.0
	Version v0.3.0
	Version v0.2.0
	Version v0.1.0

	Glossary

	Index

